Robust segmentation for multiple planar surface extraction in laser scanning 3D point cloud data
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Source Conference
Additional URLs
ISBN
Remarks
Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
This paper investigates the segmentation of multiple planar surfaces from 3D point clouds. A Principle Component Analysis (PCA) based covariance technique is used for segmentation which is one of the most popular approaches in point cloud processing. It is well known that PCA is very sensitive to outliers and does not give reliable estimates for segmentation. We propose a statistically robust segmentation algorithm using a fast-minimum covariance determinant based robust PCA approach to get the local covariance statistics. This results in more reliable, robust and accurate segmentation. The application of the proposed method to simulated and terrestrial laser scanning point cloud datasets gives good results for multiple planar surface extraction and shows significantly better performance than PCA based methods. The algorithm has the potential for non-planar complex surface reconstruction.
Related items
Showing items related by title, author, creator and subject.
-
Nurunnabi, A.; West, Geoff; Belton, D. (2015)Three dimensional point cloud data obtained from mobile laser scanning systems commonly contain outliers. In the presence of outliers most of the currently used methods such as principal component analysis for point cloud ...
-
Nurunnabi, Abdul; Belton, David; West, Geoffrey (2012)Segmentation is a most important intermediate step in point cloud data processing and understanding. Covariance statistics based local saliency features from Principal Component Analysis (PCA) are frequently used for point ...
-
Nurunnabi, A.; Belton, David; West, Geoff (2014)This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis ...