Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The unusual glitch recoveries of the high-magnetic-field pulsar J1119-6127

    Access Status
    Fulltext not available
    Authors
    Antonopoulou, D.
    Weltevrede, P.
    Espinoza, C.
    Watts, A.
    Johnston, S.
    Shannon, Ryan
    Kerr, M.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Antonopoulou, D. and Weltevrede, P. and Espinoza, C. and Watts, A. and Johnston, S. and Shannon, R. and Kerr, M. 2015. The unusual glitch recoveries of the high-magnetic-field pulsar J1119-6127. Monthly Notices of the Royal Astronomical Society. 447 (4): pp. 3924-3935.
    Source Title
    Monthly Notices of the Royal Astronomical Society
    DOI
    10.1093/mnras/stu2710
    ISSN
    0035-8711
    School
    Curtin Institute of Radio Astronomy (Physics)
    URI
    http://hdl.handle.net/20.500.11937/39660
    Collection
    • Curtin Research Publications
    Abstract

    Providing a link between magnetars and radio pulsars, high-magnetic-field neutron stars are ideal targets to investigate how bursting/magnetospheric activity and braking torque variations are connected to rotational glitches. The last spin-up glitch of the highly magnetized pulsar J1119−6127 back in 2007 was the first glitch in a rotationally powered radio pulsar to be accompanied by radiative changes. Moreover, it was followed by an uncommon glitch relaxation that resulted in a smaller spin-down rate relative to the prediction of the pre-glitch timing model. Here, we present four years of new radio timing observations and analyse the total of 16 years of timing data for this source. The new data uncover an ongoing evolution of the spin-down rate, thereby allowing us to exclude permanent changes in the external or internal torque as a standalone cause of the peculiar features of the glitch recovery. Furthermore, no additional variations of the radio pulse profile are detected, strengthening the association of the previously observed transient emission features with the glitching activity. A self-consistent measurement of the braking index yields a value n ≃ 2.7, indicating a trajectory in the P−P˙ plane inclined towards the magnetars. Such a potential evolutionary link might be strengthened by a, possibly permanent, reduction of ∼15 per cent in n at the epoch of the 2007 glitch.

    Related items

    Showing items related by title, author, creator and subject.

    • Detection of 107 glitches in 36 southern pulsars
      Yu, M.; Manchester, R.; Hobbs, G.; Johnston, S.; Kaspi, V.; Keith, M.; Lyne, A.; Qiao, G.; Ravi, V.; Sarkissian, J.; Shannon, Ryan; Xu, R. (2013)
      Timing observations from the Parkes 64-m radio telescope for 165 pulsars between 1990 and 2011 have been searched for period glitches. Data spans for each pulsar ranged between 5.3 and 20.8 yr. From the total of 1911 yr ...
    • MeerTime - the MeerKAT Key science program on pulsar timing
      Bailes, M.; Barr, E.; Bhat, Ramesh; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.; Hessels, J.; Jansseng, G.; Jameson, A.; Johnston, S.; Karastergiou, A.; Karuppusamy, R.; Kaspi, V.; Keith, M.; Kramer, M.; McLaughlin, M.; Moodley, K.; Oslowski, S.; Possenti, A.; Ransom, S.; Rasio, F.; Sievers, J.; Serylak, M.; Stappers, B.; Stairs, I.; Theureau, G.; van Straten, W.; Weltevrede, P.; Wex, N. (2016)
      © Copyright owned by the author(s). The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective ...
    • MeerTime - the MeerKAT Key science program on pulsar timing
      Bailes, M.; Barr, E.; Bhat, Ramesh; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.; Hessels, J.; Jansseng, G.; Jameson, A.; Johnston, S.; Karastergiou, A.; Karuppusamy, R.; Kaspi, V.; Keith, M.; Kramer, M.; McLaughlin, M.; Moodley, K.; Oslowski, S.; Possenti, A.; Ransom, S.; Rasio, F.; Sievers, J.; Serylak, M.; Stappers, B.; Stairs, I.; Theureau, G.; van Straten, W.; Weltevrede, P.; Wex, N. (2016)
      © Copyright owned by the author(s). The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.