Quantification of acid-base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Acid–base (AB) interactions play the most important role in bacterial attachment to surfaces and can be quantified based on electron donor/electron acceptor data from contact angle measurement (CAM) according to the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. It follows that the XDLVO theory could fail to explain attachment numbers if differences in AB interactions between strains are not apparent by CAM. This study aimed to investigate the validity of the above assumptions by comparing empirical data on attachment of six bacterial strains (three strains of Campylobacter jejuni and three strains of Salmonella) to stainless steel and XDLVO theory predictions. A significant difference (P < 0.05) in AB interactions, apparent by CAM, between C. jejuni strains allowed prediction of attachment of this species by the XDLVO theory. However, the theory failed to explain the attachment numbers for Salmonella due to similar AB interactions, as established by CAM, between the three Salmonella strains. Qualitative analysis of AB interactions by microbial adhesion to solvents (MATS) revealed a significant difference (P < 0.05) in electron donor property between the three Salmonella strains suggesting that these strains may differ with respect to AB interactions. No significant correlation with respect to electron donor property (P = 0.502, r2 = 12%) was apparent between CAM and MATS. These data suggest that CAM may not always reflect exactly AB interactions and that the difference in the outcomes from MATS and CAM should be considered when the XDLVO theory is used to predict bacterial attachment to surfaces.
Related items
Showing items related by title, author, creator and subject.
-
Tan, M.; Moore, S.; Tabor, R.; Fegan, N.; Rahman, S.; Dykes, Gary (2016)Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls ...
-
Chia, T.; Nguyen, V.; McMeekin, T.; Fegan, N.; Dykes, Gary (2011)Bacterial attachment onto materials has been suggested to be stochastic by some authors but nonstochastic and based on surface properties by others. We investigated this by attaching pairwise combinations of two Salmonella ...
-
Tan, M.; Rahman, S.; Dykes, Gary (2016)Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose ...