Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data

    156645_156645.pdf (2.956Mb)
    Access Status
    Open access
    Authors
    Hirt, Christian
    Date
    2009
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hirt, Christian. 2009. Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. Journal of Geodesy 84 (3): pp. 179-190.
    Source Title
    Journal of Geodesy
    DOI
    10.1007/s00190-009-0354-x
    ISSN
    09497714
    School
    Department of Spatial Sciences
    Remarks

    The original publication is available at : http://www.springerlink.com

    URI
    http://hdl.handle.net/20.500.11937/3975
    Collection
    • Curtin Research Publications
    Abstract

    This study demonstrates that in mountainous areas the use of residual terrain model (RTM) data significantly improves the accuracy of vertical deflections obtained from high-degree spherical harmonicsynthesis. The new Earth gravitational model EGM2008 is used to compute vertical deflections up to a spherical harmonic degree of 2160. RTM data can be constructed as difference between high-resolution SRTM (Shuttle Radar Topography Mission) elevation data and the terrain model DTM2006.0 (a spherical harmonic terrain model that complements EGM2008) providing the long-wavelength reference surface. Because these RTM elevationsimply most of the gravity field signal beyond spherical harmonic degree of 2160, they can be used to augment EGM2008 vertical deflection predictions in the very high spherical harmonic degrees.In two mountainous test areas - the German and the Swiss Alps - the combined use of EGM2008 and RTM data was successfully tested at 223 stations with high-precision astrogeodetic vertical deflections from recent zenith camera observations (accuracy of about 0.1 arc seconds) available. The comparison of EGM2008 vertical deflections with the ground-truth astrogeodetic observations shows RMS values (from differences) of 3.5 arc seconds for $\xi$ and 3.2 arc seconds for $\eta$, respectively. Using a combination of EGM2008 and RTM data for the prediction of vertical deflections considerably reduces the RMS values to the level of 0.8 arc seconds for both vertical deflection components, which is a significant improvement of about 75 percent. Density anomalies of the real topography with respect to the residual model topography are one factorlimiting the accuracy of the approach.The proposed technique for vertical deflection predictions is based on three publicly available data sets: (1) EGM2008, (2) DTM2006.0 and (3) SRTM elevation data. This allows replication of the approach for improving the accuracy of EGM2008 vertical deflection predictionsin regions with a rough topography or for improved validation of EGM2008 and future high-degree spherical harmonic models by means ofindependent ground truth data.

    Related items

    Showing items related by title, author, creator and subject.

    • Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data
      Hirt, Christian; Marti, Urs; Burki, Beat; Featherstone, Will (2010)
      We assess the new EGM2008 Earth gravitational model using a set of 1056 astrogeodetic vertical deflections over parts of continental Europe. Our astrogeodetic vertical deflection data set originates from zenith camera ...
    • Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model
      Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, R.; Seitz, K.; Gruber, T. (2014)
      This paper describes the computation and analysis of the Earth’s short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We ...
    • Study of the Earth's short-scale gravity field using the 5 ERTM2160 gravity model
      Hirt, Christian; Kuhn, Michael ; Claessens, Sten ; Pail, R.; Seitz, K.; Gruber, T. (2014)
      This paper describes the computation and analysis of the Earth?s short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.