An autowave based methodology for deformable object simulation
Access Status
Authors
Date
2006Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This paper presents a new methodology for deformable object simulation by drawing an analogy between autowaves and elastic deformation. The potential energy stored in an elastic body as a result of a deformation caused by an external force is propagated among mass points by non-linear autowaves. The novelty of the methodology is that autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal elastic forces, and non-linear material properties are modelled with non-linear autowaves other than geometric non-linearity. A haptic virtual reality system has been developed for deformation simulation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply modifying diffusion coefficients.
Related items
Showing items related by title, author, creator and subject.
-
Zhong, Yongmin; Shirinzadeh, B.; Alici, G.; Smith, J. (2005)This paper presents a new methodology for thedeformable object modelling by drawing an analogybetween cellular neural network (CNN) and elasticdeformation. The potential energy stored in an elasticbody as a result of a ...
-
Zhong, Yongmin; Shirinzadeh, B.; Alici, G.; Smith, J. (2006)Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves ...
-
Zhong, Yongmin; Shirinzadeh, B.; Alici, G.; Smith, J. (2006)In this paper, we present a new methodology for the deformation of soft objects by drawing an analogy between the Poisson equation and elastic deformation from the viewpoint of energy propagation. The potential energy ...