Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Oxygen reduction reaction at (La,Sr) (Co,Fe)O3-d electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Cao, X.
    Jiang, San Ping
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cao, X. and Jiang, S.P. 2015. Oxygen reduction reaction at (La,Sr) (Co,Fe)O3-d electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells. International Journal of Hydrogen Energy. 41 (2): pp. 1203-1212.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2015.11.135
    ISSN
    0360-3199
    School
    Fuels and Energy Technology Institute
    URI
    http://hdl.handle.net/20.500.11937/39912
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 Hydrogen Energy Publications, LLC. Oxygen reduction reaction (ORR) of La0.8Sr0.2Co0.5Fe0.5O3-d (LSCF) cathode on La9.5Si6O26.25 (LSO) apatite electrolyte is studied by electrochemical impedance spectroscopy over the temperature range 700-850 °C and the oxygen partial pressure range 0.01-0.21 atm. Different to the ORR on the LSCF electrode on Gd-doped ceria (GDC) electrolyte, the impedance response for the ORR on the LSCF electrode on LSO apatite electrolyte is characterized by clearly separable arcs at high, intermediate and low frequencies. The high frequency electrode process has activation energy of 231 ± 7 kJ mol-1 and is basically independent of oxygen partial pressure, which is most likely associated with the oxygen ion transfer from the LSCF electrode to LSO electrolyte at the interface. On the other hand, the electrode processes associated with the low and intermediate frequency arcs are dependent on the oxygen partial pressure with activation energies of 192 ± 12 kJ mol-1 and 124 ± 28 kJ mol-1, respectively, are related to the dissociative adsorption and diffusion of oxygen on the LSCF surface and through the bulk and/or pores of LSCF electrodes to the reaction sites. The results show that the diffusion and migration of silica from the LSO apatite electrolyte to the LSCF surface particularly at the interface region have significant adverse effect on the electrochemical activity of LSCF cathode.

    Related items

    Showing items related by title, author, creator and subject.

    • Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells
      Ai, N.; He, S.; Li, N.; Zhang, Qi; Rickard, William; Chen, K.; Zhang, T.; Jiang, San Ping (2018)
      Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic ...
    • Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: An AFM and EIS Study
      Jiang, San Ping (2015)
      In high temperature solid oxide fuel cells (SOFCs), electrode/electrolyte interfaces play a critical role in the electrocatalytic activity and durability of the cells. In this study, thermally and electrochemically induced ...
    • Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-das a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2electrolyte of solid oxide fuel cells
      Chen, K.; He, S.; Li, N.; Cheng, Y.; Ai, N.; Chen, M.; Rickard, William; Zhang, T.; Jiang, S. (2018)
      © 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.