Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt: Implications for tectonic setting and crustal evolution

    Access Status
    Fulltext not available
    Authors
    Moghazi, A.
    Ali, K.
    Wilde, Simon
    Zhou, Q.
    Andersen, T.
    Andresen, A.
    El-Enen, M.
    Stern, R.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Moghazi, Abdel-Kader M. and Ali, Kamal A. and Wilde, Simon A. and Zhou, Qin and Andersen, Tom and Andresen, Arild and El-Enen, Mahrous M. Abu and Stern, Robert J. 2012. Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt: Implications for tectonic setting and crustal evolution. Lithos 154: pp. 147-165.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2012.07.003
    ISSN
    0024-4937
    URI
    http://hdl.handle.net/20.500.11937/40060
    Collection
    • Curtin Research Publications
    Abstract

    The Kid Group is one of the few exposures of Neoproterozoic metavolcano-sedimentary rocks in the basement of southern Sinai in the northernmost Arabian–Nubian Shield. It is divided into the mostly metamorphosed volcaniclastic Melhaq and siliciclastic Um Zariq formations in the north and the mostly volcanic Heib and Tarr formations in the south. The Heib, Tarr, and Melhaq formations reflect an intense episode of igneous activity and immature clastic deposition associated with core-complex formation during Ediacaran time, but Um Zariq metasediments are relicts of an older (Cryogenian) sedimentary sequence. The latter yielded detrital zircons with concordant ages as young as 647 ± 12 Ma, which may indicate that the protolith of Um Zariq schist was deposited after ~ 647 Ma but 19 concordant zircons gave a 206Pb/238U weighted mean age of 813 ± 6 Ma, which may represent the maximum depositional age of this unit.In contrast, a cluster of 11 concordant detrital zircons from the Melhaq Formation yield a weighted mean 206Pb/238U age of 615 ± 6 Ma. Zircons from Heib Formation rhyolite clast define a 206Pb/238U weighted mean age of 609 ± 5 Ma, which is taken to approximate the age of Heib and Tarr formation volcanism. Intrusive syenogranite sample from Wadi Kid yields a 206Pb/238U weighted mean age of 604 ± 5 Ma. These constraints indicate that shallow-dipping mylonites formed between 615 ± 6 Ma and 604 ± 5 Ma. Geochemical data for volcanic samples from the Melhaq and Heib formations and the granites show continuous major and trace element variations corresponding to those expected from fractional crystallization. The rocks are enriched in large ion lithophile and light rare earth elements, with negative Nb anomalies. These reflect magmas generated by melting of subduction-modified lithospheric mantle, an inference that is further supported by εNd(t) = + 2.1 to + 5.5.This mantle source obtained its trace element characteristics by interaction with fluids and melts from subducting oceanic crust during the Late Cryogenian time, prior to terminal collision between fragments of East and West Gondwana at ~ 630 Ma. Positive εNd(t) values and the absence of pre-Ediacaran zircons in all but Um Zariq metasediments indicate minor interaction with Cryogenian and older crust. A model of extensional collapse following continental collision, controlled mainly by lithospheric delamination and slab break-off is suggested for the origin of the post-collision volcanics and granites at Wadi Kid. No evidence of pre-Neoproterozoic sources was found. Kid Group Ediacaran volcanic rocks are compositionally and chronologically similar to the Dokhan Volcanics of NE Egypt, which may be stratigraphic equivalents.

    Related items

    Showing items related by title, author, creator and subject.

    • New age constraints on Neoproterozoic diamicites in Kuruktag, NW China and Precambrian crustal evolution of the Tarim Craton
      He, J.; Zhu, W.; Ge, Rongfeng (2014)
      The Neoproterozoic Kuruktag Group in the Kuruktag area located in the northeastern Tarim Craton, NW China, contains multiple diamictites in the Bayisi, Altungol, Tereeken and Hankalchough formations. In order to constrain ...
    • The Proterozoic geological history of the Irumide belt, Zambia
      De Waele, Bert (2004)
      The Irumide belt is an elongate crustal province characterised by Mesoproterozoic tectonism and magmatism that stretches over a distance of approximately 900 kilometers from central Zambia to the Zambia-Tanzania border ...
    • Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks
      Li, X.; Li, W.; Li, Zheng-Xiang; Lo, C.; Wang, J.; Ye, M.; Yang , Y. (2009)
      South China was formed through the amalgamation of the Yangtze Block with the Cathaysia Block, but the timing of this amalgamation is controversial, ranging from Mesoproterozoic to Mesozoic. We report here SHRIMP U-Pb ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.