Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.
Related items
Showing items related by title, author, creator and subject.
-
Tripathi, M.; Mujawar, Mubarak; Sahu, J.; Ganesan, P. (2017)© 2017 Scrivener Publishing LLC. Agricultural waste biomass is present in a large quantity in most of the countries have considered to be a suitable material for many applications because of their abundance, degradability ...
-
Yuan, Yujie; Rezaee, Reza (2019)Fractal dimension (D) is a critical parameter to estimate the heterogeneity of complex pore structure in shale gas reservoirs. To quantify the fractal dimension of various pore types and evaluate their implications on ...
-
Zeng, J.; Zhou, Y.; Li, L.; Jiang, San Ping (2011)A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes ...