Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Simulating Plateau-Rayleigh instability and liquid reentrainment in a flow field using a VOF method

    189025_71148_336_-_Mullins.pdf (117.9Kb)
    Access Status
    Open access
    Authors
    Mullins, Benjamin
    Mead-Hunter, Ryan
    King, Andrew
    Date
    2012
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Mullins, B. J. and Mead-Hunter, R. and King, A. J. C. 2012. Simulating Plateau-Rayleigh instability and liquid reentrainment in a flow field using a VOF method in Brandner, P. A. and Pearce, B. W. (ed), 18th Australasian Fluid Mechanics Conference, Dec 3-7 2012. Launceston, Australia: Australasian Fluid Mechanics Society.
    Source Title
    Proceedings of the 18th Australasian Fluid Mechanics Conference
    Source Conference
    18th Australasian Fluid Mechanics Conference
    ISBN
    978-0-646-58373-0
    URI
    http://hdl.handle.net/20.500.11937/40335
    Collection
    • Curtin Research Publications
    Abstract

    Plateau-Rayleigh Instability (PRI) is the well known phenomena of the breakup of a liquid column or cylinder. Such a process is integral to the operation of a range of natural and anthropogenic systems, such as gas-liquid and liquid-liquid separators, fuel cells, the accumulation of dewdrops on spider webs, and many more. Volume Of Fluid (VOF) methods, such as available in OpenFOAM, should be able to accurately resolve PRI in such systems. One such system, in which PRI is integral, is the filtration of oil or water aerosol mists using fibrous filters. In many cases, entrainment (or carryover) of liquid from fibers occurs. The mechanisms behind such entrainment are poorly understood. This work will validate the OpenFOAM VOF against classical PRI theory, both with and without a secondary fluid phase flowing through the system (e.g. air). Furthermore, the work will utilise the validated two-phase VOF solver to examine the phenomena of liquid reentrainment from mist filters.

    Related items

    Showing items related by title, author, creator and subject.

    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    • Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water
      Yu, Yun (2009)
      Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
    • Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characterization of Li2O-SO3-H2O (D2O) systems at temperatures up to 420 °C
      Wang, X.; Wang, X.; Chou, I.; Hu, W.; Wan, Y.; Li, Zhen (2017)
      © 2017 Elsevier B.V.Lithium (Li) is an important component of hydrothermal fluids, especially submarine hydrothermal fluids. Investigation of the species and ion complexation of Li+ at elevated temperature and pressure ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.