Show simple item record

dc.contributor.authorNguyen, H.
dc.contributor.authorBelton, D.
dc.contributor.authorHelmholz, Petra
dc.date.accessioned2017-01-30T14:43:09Z
dc.date.available2017-01-30T14:43:09Z
dc.date.created2016-07-31T19:31:02Z
dc.date.issued2016
dc.identifier.citationNguyen, H. and Belton, D. and Helmholz, P. 2016. Scan profiles based method for segmentation and extraction of planar objects in mobile laser scanning point clouds, in Proceedings of 23rd Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Commission III (Volume XLI-B3), Jul 12-19 2016, pp. 351-358. Prague, Czech Republic: ISPRS.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/40450
dc.identifier.doi10.5194/isprsarchives-XLI-B3-351-2016
dc.description.abstract

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: They can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.

dc.titleScan profiles based method for segmentation and extraction of planar objects in mobile laser scanning point clouds
dc.typeConference Paper
dcterms.source.volume41
dcterms.source.startPage351
dcterms.source.endPage358
dcterms.source.issn1682-1750
dcterms.source.titleInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
dcterms.source.seriesInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
curtin.departmentDepartment of Spatial Sciences
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record