Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Synthesis of Poly(stearyl methacrylate-b-3-phenylpropyl methacrylate) Nanoparticles in n-Octane and Associated Thermoreversible Polymorphism

    Access Status
    Fulltext not available
    Authors
    Pei, Y.
    Sugita, O.
    Thurairajah, L.
    Lowe, Andrew
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Pei, Y. and Sugita, O. and Thurairajah, L. and Lowe, A. 2015. Synthesis of Poly(stearyl methacrylate-b-3-phenylpropyl methacrylate) Nanoparticles in n-Octane and Associated Thermoreversible Polymorphism. RSC Advances. 5 (23): pp. 17636-17646.
    Source Title
    RSC Advances
    DOI
    10.1039/c5ra00274e
    ISSN
    2046-2069
    URI
    http://hdl.handle.net/20.500.11937/40504
    Collection
    • Curtin Research Publications
    Abstract

    Poly(stearyl methacrylate) (PSMA) homopolymers with average degrees of polymerization ([X with combining macron]n) ranging from 18–30 have been prepared by homogeneous RAFT radical polymerization in toluene and subsequently employed as macro-chain transfer agents (CTAs) in non-polar RAFT dispersion formulations with 3-phenylpropyl methacrylate (PPMA) as the comonomer in n-octane at 70 °C. With PSMA18 or PSMA19 macro-CTAs in n-octane at 20 wt%, a series of PSMAx–PPPMAy block copolymers are readily accessible in situ that form the full range of common nanoparticle morphologies, with the complexity of the nano-objects increasing (spheres-to-worms-to-vesicles) with increasing [X with combining macron]n of the PPPMA block as clearly evidenced by transmission electron microscopy (TEM). An evaluation of the effect of total solids for the preparation of block copolymers of common composition indicated that polymerizations conducted at higher concentrations favoured the formation of nanoparticles with more complex morphologies. In the case of block copolymers prepared with a PSMA30 macro-CTA the only accessible morphology was spheres regardless of compositional asymmetry. However, the size of the spheres increased monotonically with increasing PPPMA block length. Formulations that yielded (essentially) pure worm phases, such as PSMA18-b-PPPMA71, formed physical gels at ambient temperature. Heating the physical gels to (or beyond) a critical temperature resulted in a macroscopic transformation to a free flowing solution. The fundamental reason for the transformation, as evidenced by TEM, was a morphological transition from worm to sphere nanoparticles facilitated, in part, by a change in solvation of the PPPMA core-forming block with increasing temperature. DLS analysis indicated that the morphology transitions were fully reversible.

    Related items

    Showing items related by title, author, creator and subject.

    • Ethanolic RAFT Dispersion Polymerization of 2-(Naphthalen-2-yloxy)ethyl Methacrylate and 2-Phenoxyethyl Methacrylate with Poly[2-(dimethylamino)ethyl methacrylate] Macro-Chain Transfer Agents
      Pei, Y.; Dharsana, N.; Lowe, Andrew (2015)
      The ethanolic reversible addition-fragmentation chain transfer dispersion polymerization (RAFTDP), at 21 wt-%, of 2-(naphthalen-2-yloxy)ethyl methacrylate (NOEMA) and 2-phenoxyethyl methacrylate (POEMA) with a poly[2- ...
    • RAFT Dispersion Polymerization in Nonpolar Media: Polymerization of 3-Phenylpropyl Methacrylate in n-Tetradecane with Poly(stearyl methacrylate) Homopolymers as Macro Chain Transfer Agents
      Pei, Y.; Thurairajah, L.; Sugita, O.; Lowe, Andrew (2015)
      Poly(stearyl methacrylate) (PSMA) homopolymers, prepared by RAFT radical polymerization, have been employed in the RAFT dispersion polymerization (RAFTDP) of 3-phenylpropyl methacrylate (PPMA) in n-tetradecane. RAFTDPs ...
    • Triply responsive soft matter nanoparticles based on poly[oligo(ethylene glycol) methyl ether methacrylate-block-3-phenylpropyl methacrylate] copolymers
      Pei, Y.; Jarrett, K.; Saunders, M.; Roth, P.; Buckley, C.; Lowe, Andrew (2016)
      The stimulus-responsive properties of soft matter nanoparticles based on poly[oligo(ethylene glycol) methyl ether methacrylate-block-3-phenylpropyl methacrylate] (p(OEGMA-block-PPMA)) copolymers in methanol and ethanol ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.