X-ray outbursts of ESO 243-49 HLX-1: Comparison with galactic low-mass X-ray binary transients
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is an author-created, un-copy edited version of an article accepted for publication in Astrophysical Journal. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://doi.org/10.1088/0004-637X/811/1/23
Collection
Abstract
We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens the similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.
Related items
Showing items related by title, author, creator and subject.
-
Russell, Thomas; Soria, Roberto; Miller-Jones, James; Curran, Peter; Markoff, S.; Russell, D.; Sivakoff, G. (2014)We present the results of our quasi-simultaneous radio, submm, infrared, optical and X-ray study of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We consider the full multiwavelength ...
-
Soria, Roberto; Musaeva, A.; Wu, K.; Zampieri, L.; Federle, S.; Urquhart, Ryan; van der Helm, E.; Farrell, S. (2017)We model the intermediate-mass black hole HLX-1, using the Hubble Space Telescope, XMM–Newton and Swift. We quantify the relative contributions of a bluer component, function of X-ray irradiation, and a redder component, ...
-
Miller-Jones, James; Sivakoff, G.; Altamirano, D.; Coriat, M.; Corbel, S.; Dhawan, V.; Krimm, H.; Remillard, R.; Rupen, M.; Russell, D.; Fender, R.; Heinz, S.; Koerding, E.; Maitra, D.; Markoff, S.; Migliari, S.; Sarazin, C.; Tudose, V. (2012)We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve ...