Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Chemisorption of Molecular Hydrogen on Carbon Nanotubes: A Route to Effective Hydrogen Storage

    Access Status
    Fulltext not available
    Authors
    Bilic, Ante
    Gale, Julian
    Date
    2008
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bilic, Ante and Gale, Julian. 2008. Chemisorption of Molecular Hydrogen on Carbon Nanotubes: A Route to Effective Hydrogen Storage. Journal of Physical Chemistry C. 112 (32): pp. 12568-12575.
    Source Title
    Journal of Physical Chemistry.C
    DOI
    10.1021/jp802104n
    Faculty
    Nanochemistry Research Centre
    School
    Nanochemistry Research Institute (Research Institute)
    URI
    http://hdl.handle.net/20.500.11937/40760
    Collection
    • Curtin Research Publications
    Abstract

    The energetics of the chemisorption of molecular hydrogen on small-diameter armchair carbon nanotubes has been investigated using first-principles density functional theory (DFT). The adsorption of hydrogen was examined at a range of coverages, from low to full monolayer coverage. Several pathways for hydrogenation were investigated, and those that could lead to energetically favorable, stable structures of fully saturated nanotubes were identified. For these routes, the calculations indicate that the addition of hydrogen, apart from at the very onset, is exothermic and also becomes increasingly more favorable with increasing degree of coverage. Carbon nanotubes of sufficiently small diameter are shown to have the capacity to store a full monolayer of hydrogen effectively via chemisorption. In addition, kinetic barriers for the dissociative chemisorption of H2 and thermal equilibration of the system were considered. These were found to be quite large for admolecules on an otherwise-clean nanotube, but to drop substantially in the vicinity of preadsorbed hydrogen; that is, the adsorbed hydrogen acts as an autocatalyst for further hydrogenation. On the basis of these findings, the chemical reaction of hydrogen with carbon nanotubes is expected to become increasingly exothermic and also to proceed more rapidly at higher coverages.

    Related items

    Showing items related by title, author, creator and subject.

    • Cryogenic Separation of Hydrogen Isotopes in Single-Walled Carbon and Boron-Nitride Nanotubes: Insight into the Mechanism of Equilibrium Quantum Sieving in Quasi-One-Dimensional Pores
      Kowalczyk, Piotr; Gauden, P.; Terzyk, A. (2008)
      Quasi-one-dimensional cylindrical pores of single-walled boron nitride and carbon nanotubes efficiently differentiate adsorbed hydrogen isotopes at 33 K. Extensive path integral Monte Carlo simulations revealed that the ...
    • Probing hydrogen spillover in Pd@MIL-101(Cr) with a focus on hydrogen chemisorption
      Szilagyi, Petra; Callini, E.; Anastasopol, A.; Kwakernaak, C.; Sachdeva, S.; van de Krol, R.; Geerlings, H.; Borgschulte, A.; Zuttel, A.; Dam, B. (2014)
      Palladium nanoparticles can split the dihydrogen bond and produce atomic hydrogen. When the metal nanoparticles are in intimate contact with a hydrogen-atom host, chemisorption of H-atoms by the host has been suggested ...
    • An investigation of polyacrylate adsorption onto hematite
      Kirwan, Luke J. (2002)
      For the majority of tailings substrates, flocculant adsorption proceeds through hydrogen bonding of the amide functionalities with neutral surfaces. However, flocculation of Bayer process residue solids takes place in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.