Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Constraints on relativistic jets in quiescent black hole X-ray binaries from broad-band spectral modelling

    235368_235368.pdf (401.1Kb)
    Access Status
    Open access
    Authors
    Plotkin, R.
    Gallo, E.
    Markoff, S.
    Homan, J.
    Jonker, P.
    Miller-Jones, James
    Russell, D.
    Drappeau, S.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Plotkin, R. and Gallo, E. and Markoff, S. and Homan, J. and Jonker, P. and Miller-Jones, J. and Russell, D. et al. 2015. Constraints on relativistic jets in quiescent black hole X-ray binaries from broad-band spectral modelling. Monthly Notices of The Royal Astronomical Society. 446 (4): pp. 4098-4111.
    Source Title
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
    DOI
    10.1093/mnras/stu2385
    ISSN
    0035-8711
    School
    Department of Physics and Astronomy
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/FT140101082
    Remarks

    This article has been accepted for publication in Monthly Notices of The Royal Astronomical Society, © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/40925
    Collection
    • Curtin Research Publications
    Abstract

    The nature of black hole jets at the lowest detectable luminosities remains an open question, largely due to a dearth of observational constraints. Here, we present a new, nearly simultaneous broad-band spectrum of the black hole X-ray binary (BHXB) XTE J1118+480 at an extremely low Eddington ratio (LX ~ 10−8.5LEdd). Our new spectral energy distribution (SED) includes the radio, near-infrared, optical, ultraviolet, and X-ray wavebands. XTE J1118+480 is now the second BHXB at such a low Eddington ratio with a well-sampled SED, thereby providing new constraints on highly sub-Eddington accretion flows and jets, and opening the door to begin comparison studies between systems. We apply a multizone jet model to the new broad-band SED, and we compare our results to previous fits to the same source using the same model at 4–5 decades higher luminosity.We find that after a BHXB transitions to the so-called quiescent spectral state, the jet base becomes more compact (by up to an order of magnitude) and slightly cooler (by at least a factor of 2). Our preferred model fit indicates that jet particle acceleration is much weaker after the transition into quiescence. That is, accelerated non-thermal particles no longer reach high enough Lorentz factors to contribute significant amounts of synchrotron X-ray emission. Instead, the X-ray waveband is dominated by synchrotron self-Compton emission from a population of mildly relativistic electrons with a quasi-thermal velocity distribution that are associated with the jet base. The corresponding (thermal) synchrotron component from the jet base emits primarily in the infrared through ultraviolet wavebands. Our results on XTE J1118+480 are consistent with broad-band modelling for A0620-00 (the only other comparably low Eddington ratio BHXB with a well-sampled SED) and for Sgr A* (the quiescent supermassive black hole at the Galactic centre). The above could therefore represent a canonical baseline geometry for accreting black holes in quiescence. We conclude with suggestions for future studies to further investigate the above scenario.

    Related items

    Showing items related by title, author, creator and subject.

    • A clean sightline to quiescence: multiwavelength observations of the high Galactic latitude black hole X-ray binary Swift J1357.2-0933
      Plotkin, Richard; Gallo, E.; Jonker, P.; Miller-Jones, James; Homan, J.; Munoz-Darias, T.; Markoff, S.; Padilla, M.; Fender, R.; Rushton, A.; Russell, D.; Torres, M. (2016)
      We present coordinated multiwavelength observations of the high Galactic latitude (b = +50°) black hole X-ray binary (BHXB) Swift J1357.2−0933 in quiescence. Our broad-band spectrum includes strictly simultaneous radio ...
    • The X-ray spectral evolution of galactic black hole X-ray binaries toward quiescence
      Plotkin, Richard; Gallo, E.; Jonker, P. (2013)
      Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a ...
    • Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152
      van der Horst, A.; Curran, Peter; Miller-Jones, James; Linford, J.; Gorosabel, J.; Russell, D.; de Ugarte Postigo, A.; Lundgren, A.; Taylor, G.; Maitra, D.; Guziy, S.; Belloni, T.; Kouveliotou, C.; Jonker, P.; Kamble, A.; Paragi, Z.; Homan, J.; Kuulkers, E.; Granot, J.; Altamirano, D.; Buxton, M.; Castro-Tirado, A.; Fender, R.; Garrett, M.; Gehrels, N.; Hartmann, D.; Kennea, J.; Krimm, H.; Mangano, V.; Ramirez-Ruiz, E.; Romano, P.; Wijers, R.; Wijnands, R.; Yang, Y. (2013)
      MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.