Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Predicting axial capacity of driven piles in cohesive soils using intelligent computing

    Access Status
    Fulltext not available
    Authors
    Alkroosh, Iyad
    Nikraz, Hamid
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Alkroosh, Iyad and Nikraz, Hamid. 2011. Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Engineering Applications of Artificial Intelligence. In Press.
    Source Title
    Engineering Applications of Artificial Intelligence
    DOI
    10.1016/j.engappai.2011.08.009
    ISSN
    0952-1976
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/40985
    Collection
    • Curtin Research Publications
    Abstract

    An accurate prediction of pile capacity under axial loads is necessary for the design. This paper presents the development of a new model to predict axial capacity of pile foundations driven into cohesive soils. Gene expression programming technique (GEP) has been utilized for this purpose. The data used for development of the GEP model is collected from the literature and comprise a series of in-situ driven piles load tests as well as cone penetration test (CPT) results. The data are divided into two subsets: training set for model calibration and independent validation set for model verification. Predictions from the GEP model are compared with experimental data and with predictions of number of currently adopted CPT-based methods. The results have demonstrated that the GEP model performs well with coefficient of correlation, mean and probability density at 50% equivalent to 0.94, 0.96 and 1.01, respectively, indicating that the proposed model predicts pile capacity accurately. 2011 Elsevier Ltd. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling pile capacity and load-settlement behaviour of piles embedded in sand & mixed soils using artificial intelligence
      Alkroosh, Iyad Salim Jabor (2011)
      This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial ...
    • Regressive approach for predicting bearing capacity of bored piles from cone penetration test data
      Alkroosh, I.; Bahadori, M.; Nikraz, Hamid; Bahadori, A. (2015)
      © 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. In this study, the least square support vector machine (LSSVM) algorithm was applied to predicting the bearing capacity of bored piles embedded in ...
    • Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks
      Shahin, Mohamed (2014)
      The design of pile foundations requires good estimation of the pile load-carrying capacity and settlement. Design for bearing capacity and design for settlement have been traditionally carried out separately. However, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.