Show simple item record

dc.contributor.authorDillon, J.
dc.contributor.authorNeben, A.
dc.contributor.authorHewitt, J.
dc.contributor.authorTegmark, M.
dc.contributor.authorBarry, N.
dc.contributor.authorBeardsley, A.
dc.contributor.authorBowman, J.
dc.contributor.authorBriggs, F.
dc.contributor.authorCarroll, P.
dc.contributor.authorDe Oliveira-Costa, A.
dc.contributor.authorEwall-Wice, A.
dc.contributor.authorFeng, L.
dc.contributor.authorGreenhill, L.
dc.contributor.authorHazelton, B.
dc.contributor.authorHernquist, L.
dc.contributor.authorHurley-Walker, N.
dc.contributor.authorJacobs, D.
dc.contributor.authorKim, H.
dc.contributor.authorKittiwisit, P.
dc.contributor.authorLenc, E.
dc.contributor.authorLine, J.
dc.contributor.authorLoeb, A.
dc.contributor.authorMcKinley, B.
dc.contributor.authorMitchell, D.
dc.contributor.authorMorales, M.
dc.contributor.authorOffringa, A.
dc.contributor.authorPaul, S.
dc.contributor.authorPindor, B.
dc.contributor.authorPober, J.
dc.contributor.authorProcopio, P.
dc.contributor.authorRiding, J.
dc.contributor.authorSethi, S.
dc.contributor.authorShankar, N.
dc.contributor.authorSubrahmanyan, R.
dc.contributor.authorSullivan, I.
dc.contributor.authorThyagarajan, N.
dc.contributor.authorTingay, Steven
dc.contributor.authorTrott, C.
dc.contributor.authorWayth, Randall
dc.contributor.authorWebster, R.
dc.contributor.authorWyithe, S.
dc.contributor.authorBernardi, G.
dc.contributor.authorCappallo, R.
dc.contributor.authorDeshpande, A.
dc.contributor.authorJohnston-Hollitt, M.
dc.contributor.authorKaplan, D.
dc.contributor.authorLonsdale, C.
dc.contributor.authorMcWhirter, S.
dc.contributor.authorMorgan, E.
dc.contributor.authorOberoi, D.
dc.contributor.authorOrd, S.
dc.contributor.authorPrabu, T.
dc.contributor.authorSrivani, K.
dc.contributor.authorWilliams, A.
dc.contributor.authorWilliams, C.
dc.identifier.citationDillon, J. and Neben, A. and Hewitt, J. and Tegmark, M. and Barry, N. and Beardsley, A. and Bowman, J. et al. 2015. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data. Physical Review D: 91 (12).

The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of ?2(k)<3.7×104mK2 at comoving scale k=0.18hMpc-1 and at z=6.8, consistent with existing limits.

dc.publisherAmerican Physical Society
dc.titleEmpirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data
dc.typeJournal Article
dcterms.source.titlePhysical Review D - Particles, Fields, Gravitation and Cosmology
curtin.departmentCurtin Institute of Radio Astronomy (Physics)
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record