Accelerated chemical aging of crystalline nuclear waste forms: A density functional theory study of 109 Cdx 109 Ag1-xS
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Recently, a combined experimental-theoretical approach to assess the effect of daughter product formation on the stability of crystalline compounds comprised of radioisotopes has been developed. This methodology was motivated by the potential impact on crystalline nuclear waste form stability of a significant fraction of the constituent atoms undergoing transmutation. What is particularly novel about this approach is the experimental use of very short-lived isotopes to accelerate the chemical evolution that occurs during decay. In this paper, we present results of density functional theory (DFT) calculations that have been performed in support of corresponding experiments on the 109 Cdx 109 Ag1-xS material system. 109Cd has been selected in order to simulate the decay of important "short-lived" fission products 137Cs or 90Sr (which decay via ß- to 137Ba and 90Zr respectively with ˜30-year half-lives). By comparison, 109Cd decays by electron capture with a half-life of 109days to 109Ag. DFT results predict the formation of heretofore unobserved CdxAg1-xS structures, which support corresponding experiments and ultimately may have implications for waste form stability.
Related items
Showing items related by title, author, creator and subject.
-
Sathasivan, Arumugam; Chiang, Jacob; Nolan, P. (2009)Chloramine decays in distribution system due to wall and bulk water reactions. In bulk water, the decay could either be due to chemical or microbiological reactions. Without such distinction it is not possible to model ...
-
Jabari Kohpaei, Ahmad (2010)Chlorine is broadly used for water disinfection at the final stage of water treatment because of its high performance to inactivate pathogenic microorganisms, its lower cost compared to other well-known disinfectants and ...
-
Schwarz, Karen Rosemary (2012)A research project was undertaken to study the effect of biosolids on the decay times of enteric pathogens in the soil. This is the most comprehensive study in Australia where the persistence of enteric microorganisms in ...