GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Knowledge of inter-system biases (ISBs) is essential to combine observations of multiple global and regional navigation satellite systems (GNSS/RNSS) in an optimal way. Earlier studies based on GPS, Galileo, BDS and QZSS have demonstrated that the performance of multi-GNSS real-time kinematic positioning is improved when the differential ISBs (DISBs) corresponding to signals of different constellations but transmitted at identical frequencies can be calibrated, such that only one common pivot satellite is sufficient for inter-system ambiguity resolution at that particular frequency. Recently, many new GNSS satellites have been launched. At the beginning of 2016, there were 12 Galileo IOV/FOC satellites and 12 GPS Block IIF satellites in orbit, while the Indian Regional Navigation Satellite System (IRNSS) had five satellites launched of which four are operational. More launches are scheduled for the coming years. As a continuation of the earlier studies, we analyze the magnitude and stability of the DISBs corresponding to these new satellites. For IRNSS this article presents for the first time DISBs with respect to the L5/E5a signals of GPS, Galileo and QZSS for a mixed-receiver baseline.It is furthermore demonstrated that single-frequency (L5/E5a) ambiguity resolution is tremendously improved when the multi-GNSS observations are all differenced with respect to a common pivot satellite, compared to classical differencing for which a pivot satellite is selected for each constellation.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Nadarajah, Nandakumaran; Teunissen, Peter; Raziq, N. (2013)New and modernized global navigation satellite systems (GNSSs) are paving the way for an increasing number of applications in positioning, navigation, and timing (PNT). A combined GNSS constellation will significantly ...
-
Chen, Beixi; Wang, Kan; El-Mowafy, Ahmed ; Yang, Xuhai (2024)The real-time Global Navigation Satellite System (GNSS) precise orbital and clock products are essential prerequisites for the Positioning, Navigation, and Timing (PNT) services and have been assessed in various studies. ...