Tracking sediment dispersal during orogenesis: A zircon age and Hf isotope study from the western Amadeus Basin, Australia
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015. The c. 570-530. Ma intraplate Petermann Orogeny of central Australia involved high temperature and pressure metamorphism, deformation, and uplift of the Mesoproterozoic Musgrave region and associated components of the Neoproterozoic Centralian Superbasin. Orogenesis was accompanied by deposition of a syn-tectonic siliciclastic sedimentary package (Supersequence 4) in adjacent depocentres such as the Amadeus Basin. Here we investigate the provenance of Supersequence 4 within the western Amadeus Basin using U-Pb age and Hf isotope data for detrital zircons. The data from eight samples are dominated by Mesoproterozoic zircons (peak at c. 1.18. Ga) matched by age and Hf isotopes to the Musgrave region. Smaller Palaeoproterozoic components match best with the Arunta region north of the Amadeus Basin. The latter zircons are likely reworked from older Amadeus Basin sediments uplifted and eroded during the Petermann Orogeny. The combined detrital zircon age signature from Supersequence 4 in the western Amadeus Basin is strongly similar to previously published data from successions of similar age in the eastern Amadeus Basin and from two metasedimentary units in the Charters Towers Province of Queensland; a K-S test indicates that these datasets are statistically identical at > 95% confidence. This suggests a sediment pathway from the Petermann Orogen to the palaeo-Pacific margin of East Gondwana via the Amadeus Basin. From existing data, a similar pathway can be inferred from the Officer Basin to the Adelaide Rift Complex on the southern side of the Petermann Orogen, although these zircon age spectra show differences in pre- and post-Mesoproterozoic components compared to the Amadeus Basin. Differences in detrital zircon age spectra and lithology between confirmed Supersequence 4 and previously inferred components of Supersequence 4 at Ulur{line below}u (Mutitjulu Arkose) and Kata Tjut{line below}a (Mount Currie Conglomerate) on the southern Amadeus Basin margin raise questions about the stratigraphic position of these latter units.
Related items
Showing items related by title, author, creator and subject.
-
Yao, Weihua; Li, Zheng-Xiang; Spencer, Christopher; Martin, E. (2018)© 2018 Sedimentary exchanges across continents during the collisional assembly and lifespan of supercontinents provide a powerful way of testing the assembling process and configuration of supercontinents. The Ord Basin ...
-
Markwitz, V.; Kirkland, Chris (2016)The effect of selective preservation during transportation of zircon grains on the detrital age spectrum is difficult to quantify and could potentially lead to systematic bias in provenance analysis. Here we investigate ...
-
Martin, E.; Collins, W.; Kirkland, Chris (2017)© 2017 Geological Society of America. Detrital zircons in Neoproterozoic-Paleozoic basins of the Pacific-Gondwana (PG) region contain a distinctive 700-500 Ma population conventionally considered to be derived from ...