Show simple item record

dc.contributor.authorNovak, P.
dc.contributor.authorVanicek, P.
dc.contributor.authorVeronneau, M.
dc.contributor.authorHolmes, S.
dc.contributor.authorFeatherstone, Will
dc.identifier.citationNovak, P. and Vanicek, P. and Veronneau, M. and Holmes, S.A. and Featherstone, W.E.. 2001. On the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination. Journal of Geodesy 74 (9): 644-654.

Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5' geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6: spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform.

dc.subjectGeoid determination - Stokes's integration - Fast Fourier transform
dc.titleOn the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination
dc.typeJournal Article
dcterms.source.titleJournal of Geodesy

Originally published in Journal of Geodesy 2001 74(9) pp.644-654.


Copyright Springer-Verlag


The original article is available at

curtin.accessStatusFulltext not available
curtin.facultyDivision of Resources and Environment
curtin.facultyDepartment of Spatial Sciences

Files in this item


This item appears in the following Collection(s)

Show simple item record