Show simple item record

dc.contributor.authorReuter, S.
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorDietmayer, K.
dc.date.accessioned2017-01-30T10:36:39Z
dc.date.available2017-01-30T10:36:39Z
dc.date.created2014-07-01T20:00:28Z
dc.date.issued2014
dc.identifier.citationReuter, S. and Vo, B.T. and Vo, B. and Dietmayer, K. 2014. The Labeled Multi-Bernoulli Filter. IEEE Transactions on Signal Processing. 62 (12): pp. 3246-3260.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/4136
dc.identifier.doi10.1109/TSP.2014.2323064
dc.description.abstract

This paper proposes a generalization of the multi- Bernoulli filter called the labeled multi-Bernoulli filter that outputs target tracks. Moreover, the labeled multi-Bernoulli filter does not exhibit a cardinality bias due to a more accurate update approximation compared to the multi-Bernoulli filter by exploiting the conjugate prior form for labeled Random Finite Sets. The proposed filter can be interpreted as an efficient approximation of the $delta$-Generalized Labeled Multi-Bernoulli filter. It inherits the advantages of the multi-Bernoulli filter in regards to particle implementation and state estimation. It also inherits advantages of the $delta$ -Generalized Labeled Multi-Bernoulli filter in that it outputs (labeled) target tracks and achieves better performance.

dc.publisherIEEE
dc.subjectmarked point process
dc.subjectconjugate prior
dc.subjectrandom finite set
dc.subjecttarget tracking
dc.subjectBayesian estimation
dc.titleThe Labeled Multi-Bernoulli Filter
dc.typeJournal Article
dcterms.source.volume62
dcterms.source.number12
dcterms.source.startPage3246
dcterms.source.endPage3260
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing.
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record