Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Stability and control of switched systems with impulsive effects

    130175_Xu2009.pdf (872.5Kb)
    Access Status
    Open access
    Authors
    Xu, Honglei
    Date
    2009
    Supervisor
    Prof. Kok Lay Teo
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    Department of Mathematics and Statistics
    URI
    http://hdl.handle.net/20.500.11937/415
    Collection
    • Curtin Theses
    Abstract

    Switched systems belong to a special class of hybrid systems, which consist of a collection of subsystems described by continuous dynamics together with a switching rule that specifies the switching between the subsystems. Such systems can be used to describe a wide range of practical applications, such as orbital transfer of satellites, auto-driving design, communication security, financial investment, neural networks and chaotic systems, just to name a few. For these switched systems, the occurrence of impulses and delay phenomena cannot be avoided. For example, in some circuit systems, switching speeds of amplifiers within the units’ individual circuits are finite, and hence causing delays in the transmission of signals. The abrupt changes in the voltages produced by faulty circuit elements are exemplary of impulsive phenomena. On the other hand, it is well known that stability is one of the most important issues in real applications for any dynamical system, and there is no exception for switched systems, switched systems with impulses, or delayed switched systems.With the motivations mentioned above, we present, in this thesis, new developments resulting from our work on fundamental stability theory and design methodologies for stabilizing controllers of several types of switched systems with impulses and delays. These systems and their practical motivations are first discussed in Chapter 1. Brief reviews on existing results which are directly relevant to the subject matters of the thesis are also given in the same chapter.In Chapter 2, we consider a class of impulsive switched systems with time- invariant delays and parameter uncertainties. New sufficient stability conditions are obtained for these impulsive delayed switched systems. For illustration, a numerical example is solved using the proposed approach.In Chapter 3, new asymptotic stability criteria, expressed in the form of linear matrix inequalities, are derived using the Lyapunov-Krasovskii technique for a class of impulsive switched systems with time-invariant delays. These asymptotic stability criteria are independent of time delays and impulsive switching intervals. A design methodology is then developed for the construction of a feedback controller which asymptotically stabilizes the closed-loop system. A numerical example is solved using the proposed method.In Chapter 4, new asymptotic stability criteria, expressed in the form of linear matrix inequalities, and a design procedure for the construction of a delayed stabilizing feedback controller are obtained using the receding horizon method for a class of uncertain impulsive switched systems with input delay. For illustration, a numerical example is solved using the proposed method.In Chapter 5, we consider the stabilization problem for cellular neural networks with time delays. Based on the Lyapunov stability theory, we obtain new sufficient conditions for asymptotical stability of the delayed cellular neural networks and devise a computational procedure for constructing impulsive feedback controllers which stabilize the delayed cellular neural networks. A numerical example is given, demonstrating the effectiveness of the proposed method.In Chapter 6, we consider a class of H∞ optimal control problems with systems described by uncertain impulsive differential equations. A new design method for the construction of feedback control laws which asymptotically stabilize the uncertain closed-loop systems is obtained. Furthermore, it is shown that the H∞ norm-bounded constraints on disturbance attenuation for all admissible uncertainties are satisfied. New sufficient conditions, expressed as linear matrix inequalities, for ensuring the existence of such a control law are presented. A numerical example is solved, illustrating the effectiveness of the proposed method.In Chapter 7, we conclude the thesis by making some concluding remarks and giving brief discussions on topics for further research.

    Related items

    Showing items related by title, author, creator and subject.

    • Computational methods for solving optimal industrial process control problems
      Chai, Qinqin (2013)
      In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
    • Computational studies of some static and dynamic optimisation problems
      Lee, Wei R. (1999)
      In this thesis we shall investigate the numerical solutions to several important practical static and dynamic optimization problems in engineering and physics. The thesis is organized as follows.In Chapter 1 a general ...
    • A study of optimization problems involving stochastic systems with jumps
      Liu, Chunmin (2008)
      The optimization problems involving stochastic systems are often encountered in financial systems, networks design and routing, supply-chain management, actuarial science, telecommunications systems, statistical pattern ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.