Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

    Access Status
    Fulltext not available
    Authors
    Samui, P.
    Shahin, Mohamed
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Samui, P. and Shahin, M. 2014. Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation. Journal of Numerical Methods in Civil Engineering. 1 (1): pp. 37-45.
    Source Title
    Journal of Numerical Methods in Civil Engineering
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/42029
    Collection
    • Curtin Research Publications
    Abstract

    This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed based on data obtained from the literature and comprise in-situ pile loading tests and Cone Penetration Test (CPT) results. Equations are derived from the developed RVM and MARS models, and the prediction results are compared with those obtained from available CPT-based methods. Sensitivity has been carried out to determine the effect of each input parameter. This study confirms that the developed RVM and MARS models predict ultimate capacity of driven piles and drilled shafts reasonably well, and outperform the available methods.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling pile capacity and load-settlement behaviour of piles embedded in sand & mixed soils using artificial intelligence
      Alkroosh, Iyad Salim Jabor (2011)
      This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial ...
    • Regressive approach for predicting bearing capacity of bored piles from cone penetration test data
      Alkroosh, I.; Bahadori, M.; Nikraz, Hamid; Bahadori, A. (2015)
      © 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. In this study, the least square support vector machine (LSSVM) algorithm was applied to predicting the bearing capacity of bored piles embedded in ...
    • Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks
      Shahin, Mohamed (2014)
      The design of pile foundations requires good estimation of the pile load-carrying capacity and settlement. Design for bearing capacity and design for settlement have been traditionally carried out separately. However, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.