Automated Selection of Trabecular Bone Regions in Knee Radiographs
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the "gold standard" that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8×12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI) =0.83 (medial) and 0.81 (lateral) and the offset= [-1.78, 1.27] × [-0.65,0.26] mm (medial) and [-2.15, 1.59] × [-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions with an accuracy that is sufficient for fractal analyses of bone texture.
Related items
Showing items related by title, author, creator and subject.
-
Wolski, Marcin; Podsiadlo, Pawel; Stachowiak, Gwidon (2014)Purpose: Grading of hand radiographs for joint space narrowing and osteophytes is the traditional method for assessing hand OA. However this assessment can be difficult and inaccurate since the changes of cartilage volume ...
-
Podsiadlo, Pawel; Dahl, L; Englund, M; Lohmander, L; Stachowiak, Gwidon (2008)Objective: To develop an accurate method for quantifying differences in the trabecular structure in the tibial bone between subjects with and without knee osteoarthritis (OA). Methods: Standard knee radiographs were taken ...
-
Wolski, M.; Englund, M.; Stachowiak, Gwidon; Podsiadlo, P. (2016)Manual selection of finger trabecular bone texture regions on hand X-ray images is time-consuming, tedious, and observer-dependent. Therefore, we developed an automated method for the region selection. The method selects ...