Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article has been published in Monthly Notices of the Royal Astronomical Society. © 2013 The Authors. Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Collection
Abstract
Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on 5-yr time-scales, far in excess of signals of interest to pulsar timing arrays, such as that induced by a gravitational wave background. Measurement of these delay variations is not only crucial for the detection of such signals, but also provides an unparalleled measurement of the turbulent interstellar plasma at astronomical unit (au) scales. In this paper we demonstrate that without consideration of wavelength-independent red noise, ‘simple’ algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays. We present a robust method for this correction, which we validate through simulations, and apply it to observations from the Parkes Pulsar Timing Array. Correction for dispersion variations comes at a cost of increased band-limited white noise. We discuss scheduling to minimize this additional noise, and factors, such as scintillation, that can exacerbate the problem. Comparison with scintillation measurements confirms previous results that the spectral exponent of electron density variations in the interstellar medium often appears steeper than expected. We also find a discrete change in dispersion measure of PSR J1603−7202 of ∼2 × 10−3 cm−3 pc for about 250 d. We speculate that this has a similar origin to the ‘extreme scattering events’ seen in other sources. In addition, we find that four pulsars show a wavelength-dependent annual variation, indicating a persistent gradient of electron density on an au spatial scale, which has not been reported previously.
Related items
Showing items related by title, author, creator and subject.
-
Shannon, Ryan; Cordes, J. (2017)© 2016 The Authors. To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. ...
-
You, X.; Hobbs, G.; Coles, W.; Manchester, R.; Edwards, R.; Bailes, M.; Sarkissian, J.; Verbiest, J.; van Straten, W.; Hotan, Aidan; Ord, Stephen; Jenet, F.; Bhat, N.; teoh, A. (2007)We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars observed as part of the Parkes Pulsar Timing Array project.We carry out a statistically rigorous structure function analysis ...
-
Lentati, L.; Shannon, Ryan; Coles, W.; Verbiest, J.; van Haasteren, R.; Ellis, J.; Caballero, R.; Manchester, R.; Arzoumanian, Z.; Babak, S.; Bassa, C.; Bhat, N.; Brem, P.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Chatterjee, S.; Cognard, I.; Cordes, J.; Dai, S.; Demorest, P.; Desvignes, G.; Dolch, T.; Ferdman, R.; Fonseca, E.; Gair, J.; Gonzalez, M.; Graikou, E.; Guillemot, L.; Hessels, J.; Hobbs, G.; Janssen, G.; Jones, G.; Karuppusamy, R.; Keith, M.; Kerr, M.; Kramer, M.; Lam, M.; Lasky, P.; Lassus, A.; Lazarus, P.; Lazio, T.; Lee, K.; Levin, L.; Liu, K.; Lynch, R.; Madison, D.; McKee, J.; McLaughlin, M.; McWilliams, S.; Mingarelli, C.; Nice, D.; Oslowski, S.; Pennucci, T.; Perera, B.; Perrodin, D.; Petiteau, A.; Possenti, A.; Ransom, S.; Reardon, D.; Rosado, P.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Siemens, X.; Smits, R.; Stairs, I.; Stappers, B.; Stinebring, D.; Stovall, K.; Swiggum, J.; Taylor, S.; Theureau, G.; Tiburzi, C.; Toomey, L.; Vallisneri, M.; van Straten, W.; Vecchio, A.; Wang, J.; Wang, Y.; You, X.; Zhu, W.; Zhu, X. (2016)We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal ...