Guaranteed-cost controls of minimal variation: A numerical algorithm based on control parameterization
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
Source Conference
School
Remarks
Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
The optimal control literature is dominated by standard problems in which the system cost functional is expressed in the well-known Bolza form. Such Bolza cost functionals consist of two terms: a Mayer term (which depends solely on the final state reached by the system) and a Lagrange integral term (which depends on the state and control values over the entire time horizon). One limitation with the standard Bolza cost functional is that it does not consider the cost of control changes. Such costs should certainly be considered when designing practical control strategies, as changing the control signal will invariably cause wear and tear on the system’s acutators. Accordingly, in this paper, we propose a new optimal control formulation that balances system performance with control variation. The problem is to minimize the total variation of the control signal subject to a guaranteed-cost constraint that ensures an acceptable level of system performance (as measured by a standard Bolza cost functional). We first apply the control parameterization method to approximate this problem by a non-smooth dynamic optimization problem involving a nite number of decision variables. We then devise a novel transformation procedure for converting this non-smooth dynamic optimization problem into a smooth problem that can be solved using gradient-based optimization techniques. The paper concludes with numerical examples in fisheries and container crane control.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Qinqin (2013)In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem ...
-
Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...