Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A high-performance cathode for the next generation of solid-oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Shao, Zongping
    Haile, S.
    Date
    2010
    Type
    Book Chapter
    
    Metadata
    Show full item record
    Citation
    Shao, Z. and Haile, S. 2010. A high-performance cathode for the next generation of solid-oxide fuel cells. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 255-258.
    Source Title
    Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
    DOI
    10.1142/9789814317665_0036
    ISBN
    9789814317665
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/42131
    Collection
    • Curtin Research Publications
    Abstract

    © 2011 Nature Publishing Group, a division of Macmillan Publishers Limited and published by World Scientific Publishing Co. under licence. All rights reserved.Fuel cells directly and efficiently convert chemical energy to electrical energy1. Of the various fuel cell types, solid-oxide fuel cells (SOFCs) combine the benefits of environmentally benign power generation with fuel flexibility. However, the necessity for high operating temperatures (800–1,000 °C) has resulted in high costs and materials compatibility challenges2. As a consequence, significant effort has been devoted to the development of intermediate-temperature (500–700 °C) SOFCs. A key obstacle to reduced-temperature operation of SOFCs is the poor activity of traditional cathode materials for electrochemical reduction ofoxygen in this temperature regime2. Here we present Ba0.5Sr0.5-Co0.8Fe0.2O3-d(BSCF) as a new cathode material for reducedtemperature SOFC operation. BSCF, incorporated into a thin-film doped ceria fuel cell, exhibits high power densities (1,010mWcm-2and 402mWcm-2at 600 °C and 500 °C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. We further demonstrate that BSCF is ideally suited to ‘single-chamber’ fuel-cell operation, where anode and cathode reactions take place within the same physical chamber3. The high power output of BSCF cathodes results from the high rate of oxygen diffusion through the material. By enabling operation at reduced temperatures, BSCF cathodes may result in widespread practical implementation of SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
      Zhou, W.; Ran, R.; Shao, Zongping (2009)
      Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC ...
    • Future prospects for the design of 'state-of-the-art' solid oxide fuel cells
      Mori, T.; Wepf, R.; Jiang, San Ping (2020)
      Solid oxide fuel cells (SOFCs) are the clean and efficient power sources for generating electricity from a variety of fuels (i.e. hydrogen, natural gas, and biogas) [1-3]. Also, SOFCs have no corrosive components and do ...
    • Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
      Lin, Y.; Ran, R.; Shao, Zongping (2010)
      Electrochemical performance of silver-modified Ba0.5Sr 0.5Co0.8Fe0.2O3-d (BSCF-Ag) as oxygen reduction electrodes for a protonic intermediate-temperature solid-oxide fuel cell (SOFC-H+) with BaZr0.1Ce0.8Y 0.1O3 (BZCY) ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.