Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modeling squirt dispersion and attenuation in fluid-saturated rocks using pressure dependency of dry ultrasonic velocities

    189488_62516_Modeling_squirt_dispersion_and_attenuation.pdf (1.186Mb)
    Access Status
    Open access
    Authors
    de Paula, O.
    Pervukhina, M.
    Makarynska, D.
    Gurevich, Boris
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    de Paula, Osni Bastos and Pervukhina, Marina and Makarynska, Dina and Gurevich, Boris. 2012. Modeling squirt dispersion and attenuation in fluid-saturated rocks using pressure dependency of dry ultrasonic velocities. Geophysics. 77 (3): pp. WA157-WA168.
    Source Title
    Geophysics
    DOI
    10.1190/geo2011-0253.1
    Additional URLs
    http://geophysics.geoscienceworld.org/content/77/3/WA157
    ISSN
    0016-8033
    Remarks

    Published by the Society of Exploration Geophysicists. © 2012 Society of Exploration Geophysicists.

    A link to the Society's web site is available from the Related Links field.

    URI
    http://hdl.handle.net/20.500.11937/4216
    Collection
    • Curtin Research Publications
    Abstract

    Modeling dispersion and attenuation of elastic waves in fluid-saturated rocks due to squirt flow requires the knowledge of a number of geometrical parameters of the pore space, in particular, the characteristic aspect ratio of the pores. These parameters are usually inferred by fitting measurements on saturated rocks to model predictions. To eliminate such fitting and thus make the model more predictive, we propose to recover the geometrical parameters of the pore space from the pressure dependency of elastic moduli on dry samples. Our analysis showed that the pressure dependency of elastic properties of rocks (and their deviation from Gassmann’s prediction) at ultrasonic frequencies is controlled by the squirt flow between equant, stiff, and so-called intermediate pores (with aspect ratios between 10−3–2 × 10−1). Such intermediate porosity is expected to close at confining pressures of between 200 and 2000 MPa, and thus cannot be directly obtained from ultrasonic experiments performed at pressures below 50 MPa. However, the presence of this intermediate porosity is inferred from the significant linear trend in the pressure dependency of elastic properties of the dry rock and the difference between the bulk modulus of the dry rock computed for spherical pores and the measured modulus at 50 MPa.Moreover, we can infer the magnitude of the intermediate porosity and its characteristic aspect ratio. Substituting these parameters into the squirt model, we have computed elastic moduli and velocities of the water-saturated rock and compared these predictions against laboratory measurements of these velocities. The agreement is good for a number of clean sandstones, but not unexpectedly worse for a broad range of shaley sandstones. Our predictions showed that dispersion and attenuation caused by the squirt flow between compliant and stiff pores may occur in the seismic frequency band. Confirmation of this prediction requires laboratory measurements of elastic properties at these frequencies.

    Related items

    Showing items related by title, author, creator and subject.

    • Elastic properties of carbonates : measurements and modelling
      Bastos de Paula, Osni (2011)
      This thesis is a multi-scale study of carbonate rocks, from the nanoscale and digital rock investigations to the imaging studies of carbonate reservoir analogues. The essential links between these extremes are the carbonate ...
    • Theoretical and numerical modelling of the effect of viscous and viscoelastic fluids on elastic properties of saturated rocks
      Makarynska, Dina (2010)
      Rock physics is an essential link connecting seismic data to the properties of rocks and fluids in the subsurface. One of the most fundamental questions of rock physics is how to model the effects of pore fluids on rock ...
    • A triple porosity scheme for fluid/solid substitution: theory and experiment
      Sun, Y.; Gurevich, Boris; Lebedev, Maxim; Glubokovskikh, Stanislav; Mikhaltsevitch, Vassili; Guo, J. (2018)
      Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.