Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Rock engineering systems adopted for sanding prediction in perforation tunnels

    Access Status
    Fulltext not available
    Authors
    Younessi, Ahmadreza
    Rasouli, Vamegh
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Younessi, A. and Rasouli, V. 2010. Rock engineering systems adopted for sanding prediction in perforation tunnels. APPEA Journal. 50: pp. 613-621.
    Source Title
    APPEA Journal
    ISSN
    13264966
    School
    Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/42267
    Collection
    • Curtin Research Publications
    Abstract

    Sand production is an important issue in reservoirs with weak or unconsolidated sand formations. Production of sand not only causes several problems in maintaining wellbore integrity but also is a problem during production where damages through the tubing and surface facilities are likely to occur due to the sand grains being transported along this path. The rock engineering systems (RES), initially introduced in mining and civil related geomechanics problems, is one approach to analysing the interrelationship between different parameters involved in a rock engineering project. This is the approach that was adopted in this work to study and predict the sanding potential in perforation tunnels. Sanding mechanism in perforation tunnels during production was reviewed and all effective parameters were identified. An interaction matrix was introduced to study the sanding mechanism through the interrelation between pairs of parameters. The interaction matrix was coded using a semi-quantitative rating approach to determine the interaction between each pair of parameters. The interaction intensity and dominance of each parameter in the system were studied through the cause-effect diagram to classify the parameters. This will assist in finding a better engineering action to mitigate or eliminate instabilities. A sensitivity analysis was conducted on a data set, and major parameters playing in sand production in a perforation tunnel were identified using analytical formulae. The results of sensitivity analysis were compared with the cause-effect diagram derived from the interaction matrix. A good agreement between the two methods was observed. This shows the usefulness of RES for identifying potential sanding solutions through the interaction matrix analysis.

    Related items

    Showing items related by title, author, creator and subject.

    • Groundwater and underground excavations: From theory to practice
      Sharifzadeh, Mostafa; Javadi, M. (2017)
      © 2017 Taylor & Francis Group, London, UK. The hydraulic behavior and associated mechanical, physical, and chemical processes of geological formations and rock masses are one of the most important aspects of rock ...
    • The impact of cement sheath mechanical properties on near wellbore hydraulic fracture initiation
      Fallahzadeh, S.; Rasouli, Vamegh (2012)
      Hydraulic fracturing is a stimulation technique which is used, in particular in unconventional reservoirs such as shale gas and tight sandstones, in order to en-hance production of hydrocarbon. Hydraulic fracturing is ...
    • The effect of inner borehole and outer boundary dimensions in thick-walled cylinder test
      Tehrani, S.; Sinaki, A.; Sarmadivaleh, Mohammad; Golmohammadi, V. (2016)
      Copyright 2016, Society of Petroleum Engineers.It is well-known that the risk of sanding varies for different completion systems, i.e. open hole versus cased and perforation, in a given wellbore and reservoir. Part of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.