Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Over many years chemists have established the general principle that two-dimensional chemical structures constructed with pure sp2-carbon atoms will definitely form an aromatic system with delocalized electron density. However, based on a recently proposed chemical structure, graphenylene, this rule may finally be broken. Herein, we predict the properties of a new two-dimensional sp2- carbon network known as graphenylene, which is the first example of a non-delocalized sp2-carbon structure composed of cyclohexatriene units with two quite distinct C–C bonds within a C6 ring. In addition, theoretical calculations demonstrate that graphenylene has periodic pores of 3.2 Å in diameter and is a semiconductor with a narrow direct band gap, making it promising for various applications, such as electronic devices and efficient hydrogen separation. This study provides a new perspective on carbon allotropes, leading to a better understanding of [N]phenylene based organic frameworks, as well as clarifying the relationship between benzene and cyclohexatriene.
Related items
Showing items related by title, author, creator and subject.
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environmentsChan, Emilyn Wai Lyn (2011)Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
-
Sudarisman (2009)The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...