Novel cathode-supported hollow fibers for light weight micro-tubular solid oxide fuel cells with an active cathode functional layer
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Micro-tubular SOFCs have the potential to become light-weight portable auxiliary power units for aircraft or spacecraft. In this work, a novel dual-layer ceramic hollow fiber for a cathode-supported micro-tubular solid oxide fuel cell (MT-SOFC) has been successfully developed via a co-spinning-sintering technique. The green cathode hollow fibers, in dual layer configuration, consisting of a La0.8Sr0.2MnO3-d (LSM) main layer and a LSM-Y2O3 stabilized ZrO2 (YSZ) functional layer with increased three phase boundary length, are first prepared by co-spinning, which are then sintered at around 1350°C to allow the creation of sufficient mechanical strength. Other cell components like the electrolyte (YSZ) and anode (NiO + YSZ) are then coated separately. The coated electrolyte film with a thickness of around 27 µm is obtained by co-sintering of YSZ/LSM-YSZ/LSM in a sandwich structure. The porous LSM substrate functions as an oxygen-supplying and current collecting layer. The prepared MT-SOFC, tested with hydrogen as the fuel and air as the oxidant, delivers a maximum power density of up to 475 mW cm-2 at 850°C, which is much higher than that of a similar cell without a cathode functional layer.
Related items
Showing items related by title, author, creator and subject.
-
Dong, D.; Shao, X.; Hu, X.; Chen, K.; Xie, K.; Yu, L.; Ye, Z.; Yang, P.; Parkinson, G.; Li, Chun-Zhu (2016)Gas diffusion limitation within Ni/YSZ cathode supports of solid oxide electrolysis cells (SOECs) during steam electrolysis has been reported in previous studies. In this study, a microchanneled cathode support has been ...
-
Upama, M.; Elumalai, Naveen Kumar; Mahmud, M.; Sun, H.; Wang, D.; Chan, K.; Wright, M.; Xu, C.; Uddin, A. (2017)In this article, we attempt to demonstrate a way of tackling one of the biggest challenges in the path of commercialization of organic solar cells, the initial photo-degradation of the cells known as “burn-in”. The “burn-in” ...
-
He, Shuai; Zhang, Qi; Maurizio, Giulio; Catellani, Lorenzo; Chen, K.; Chang, Q.; Santarelli, M.; Jiang, San Ping (2018)© Copyright 2018 American Chemical Society. Bismuth-based oxides exhibit outstanding oxygen ionic conductivity and fast oxygen surface kinetics and have shown great potential as a highly active component for electrode ...