Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 American Chemical Society.Nitrogen containing mesoporous carbon obtained by the pyrolysis of graphene oxide (GO) wrapped ZIF-8 (Zeolitic Imidazolate Frameworks-8) micro crystals is demonstrated to be an efficient catalyst for the oxygen reduction reaction (ORR). ZIF-8 synthesis in the presence of GO sheets helped to realize layers of graphene oxide over ZIF-8 microcrystals and the sphere-like structures thus obtained, on heat treatment, transformed to highly porous carbon with a nitrogen content of about 6.12% and surface area of 502 m2/g. These catalysts with a typical micromeso porous architecture exhibited an onset potential of 0.88Vvs RHE in a four electron pathway and also demonstrated superior durability in alkaline medium compared to that of the commercial Pt/C catalyst. The N-doped porous carbon derived from GO sheathed ZIF-8 core-shell structures could therefore be employed as an efficient electrocatalyst for fuel cell applications.
Related items
Showing items related by title, author, creator and subject.
-
Li, Chao (2012)The purpose of this dissertation was to synthesize and evaluate porous poly(2- hydroxyethyl methacrylate) (PHEMA) and PHEMA composite hydrogels containing various concentrations of titanium dioxide (TiO2) nanoparticles, ...
-
Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environmentsChan, Emilyn Wai Lyn (2011)Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
-
Deng, X.; Zhao, B.; Zhu, L.; Shao, Zongping (2015)Porous carbon materials have received considerable attention recently, particularly in the energy field. To meet the increasing demands for electrochemical energy conversion and storage-related applications, the development ...