A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry
Access Status
Authors
Date
2005Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Remarks
Copyright © 2005 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Collection
Abstract
In this paper, a functional model for determining the minimum and maximum detectable deformation gradient in terms of coherence for synthetic aperture radar (SAR) sensors is presented. The model is developed based on a new methodology that incorporates both real and simulated data. Sets of representative surface deformation models have been simulated, and the associated phase from these models introduced into real SAR data acquired by European Remote Sensing 1 and 2 satellites. Subsequently,interferograms were derived, and surface deformation was estimated. A number of cases of surface deformation with varying magnitudes and spatial extent have been simulated. In each case, the resultant surface deformation has been compared with the "true" surface deformation as defined by the deformation model. Based on these comparisons, a set of observations that lead to a new functional model has been established.Finally, the proposed model has been validated against external datasets and proven viable. Although the major weakness of the model is its reliance on visual interpretation of interferograms, this model can serve as a decision-support tool to determine whether or not to apply satellite radar interferometry to study a given surface deformation.
Related items
Showing items related by title, author, creator and subject.
-
Baran, Ireneusz (2004)Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a ...
-
Laukkanen, A.; Holmberg, K.; Ronkainen, H.; Stachowiak, Gwidon; Podsiadlo, Pawel; Wolski, Marcin; Gee, M.; Gachot, C.; Li, L. (2017)© 2017 Elsevier B.V. The effects of surface roughness and topographical orientation on surface stresses influencing wear have been investigated for diamond like carbon (DLC) coated steel surfaces with three levels of ...
-
Loo, Vera ; Wong, Chou Khong (2020)Unmanned Aerial Vehicle (UAV) has been widely used for slope stability analysis. The objective of this research is to test the digital surface model (DSM) results generated from UAV images with the data acquired from total ...