Supervised subspace learning with multi-class Lagrangian SVM on the Grassmann Manifold
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
Learning robust subspaces to maximize class discrimination is challenging, and most current works consider a weak connection between dimensionality reduction and classifier design. We propose an alternate framework wherein these two steps are combined in a joint formulation to exploit the direct connection between dimensionality reduction and classification. Specifically, we learn an optimal subspace on the Grassmann manifold jointly minimizing the classification error of an SVM classifier. We minimize the regularized empirical risk over both the hypothesis space of functions that underlies this new generalized multiclass Lagrangian SVM and the Grassmann manifold such that a linear projection is to be found. We propose an iterative algorithm to meet the dual goal of optimizing both the classifier and projection. Extensive numerical studies on challenging datasets show robust performance of the proposed scheme over other alternatives in contexts wherein limited training data is used, verifying the advantage of the joint formulation.