Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Mechanistic Investigation into Bed Agglomeration during Biomass Fast Pyrolysis in a Fluidized-Bed Reactor

    Access Status
    Fulltext not available
    Authors
    Burton, A.
    Wu, Hongwei
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Burton, A. and Wu, H. 2012. Mechanistic Investigation into Bed Agglomeration during Biomass Fast Pyrolysis in a Fluidized-Bed Reactor. Energy & Fuels. 26 (11): pp. 6979-6987.
    Source Title
    Energy & Fuels
    DOI
    10.1021/ef300406k
    ISSN
    08870624
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/42541
    Collection
    • Curtin Research Publications
    Abstract

    This paper demonstrates that during the pyrolysis of mallee leaf (355-500 µm) in a fluidized-bed reactor (bed materials: silica sand, 125-355 µm) at 300-700 °C, bed agglomeration takes place due to the formation of char-char and/or char-sand agglomerates connected by carbon-enriched necks. There are two types of bed agglomeration: one formed due to solvent-soluble organic matter which dissembles upon solvent washing and the other due to solvent-insoluble organic matter produced from biomass pyrolysis. The yield of each type of bed agglomeration is broadly proportional to the yield of thecorresponding type of organic matter in the bed samples. The total yield of bed agglomeration decreases with increasing pyrolysis temperature, from 16.5% at 300 °C to 9.5% at 500 °C and 1.8% at 700 °C. The distribution of the two types of bed agglomeration is also strongly temperature dependent. At low temperatures (e.g., 300 °C), bed agglomeration is dominantly contributed by those formed by solvent-insoluble organic matter. As pyrolysis temperature increases, bed agglomeration due tosolvent-soluble organic matter becomes increasingly important and reaches a maximum at 500 °C. At pyrolysis temperatures above 600 °C, there is a drastic reduction in the bed agglomeration formed by solvent-soluble organic matter due to thermal cracking so that bed agglomeration is again dominantly formed by solvent-insoluble organic matter. Overall, bed agglomeration during biomass pyrolysis in a fluidized-bed reactor is due to the production of sticky agents, including both partially molten pyrolyzing biomass particles and the organic matter (both solvent- soluble and -insoluble) produced from biomass pyrolysis reactions.

    Related items

    Showing items related by title, author, creator and subject.

    • Bed Agglomeration during Bio-oil Fast Pyrolysis in a Fluidized-Bed Reactor
      Gao, Wenran; Zhang, Mingming; Wu, Hongwei (2018)
      This study investigates bed agglomeration during fast pyrolysis of bio-oil in a fluidized-bed reactor at temperatures of 500-800 °C. The samples used include bio-oil, bio-oil water-soluble fraction (WSF), bio-oil ...
    • Removal and Recycling of Inherent Inorganic Nutrient Species in Mallee Biomass and Derived Biochars by Water Leaching
      Wu, Hongwei; Yip, Kong; Kong, Zhaoying; Li, Chun-Zhu; Liu, Dawei; Yu, Yun; Gao, Xiangpeng (2011)
      Biomass growth extracts inorganic nutrients from soil as inherent nutrient species in the biomass. Unless at least some of these inherent inorganic nutrients are eventually recycled to the soil, biomass utilization during ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.