The best approximation theorems and variational inequalities for discontinuous mappings in Banach spaces
Access Status
Fulltext not available
Authors
Liu, Lishan
Kong, D.
Wu, Yong Hong
Date
2015Type
Journal Article
Metadata
Show full item recordCitation
Liu, L. and Kong, D. and Wu, Y.H. 2015. The best approximation theorems and variational inequalities for discontinuous mappings in Banach spaces. Science China Mathematics. 58 (12): pp. 2581-2592.
Source Title
Science China Mathematics
ISSN
School
Department of Mathematics and Statistics
Collection
Abstract
We discuss Ky Fan’s theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operator and the order-theoretic fixed point theory. Moreover, we derive some properties of the metric projection operator in Banach spaces. As applications of our best approximation theorems, three fixed point theorems for non-self maps are established and proved under some conditions. Our results are generalizations and improvements of various recent results obtained by many authors.
Related items
Showing items related by title, author, creator and subject.
-
Goh, B.; Leong, W.; Teo, Kok Lay (2014)An iterative method to compute the minimum point in an unconstrained optimization problem can be viewed as a control system. Thus to achieve robust solutions it is desirable to have feedback solution rather than open ...
-
Nugraheni, Fitri (2008)This thesis sets out research carried out to investigate the usefulness of a descriptive database of construction methods for safety assessment. In addition, it investigates the possibility of utilising construction images ...
-
Kong, D.; Liu, Lishan; Wu, Yong Hong (2015)We prove that Fan's theorem is true for discontinuous increasing mappings f in a real partially ordered reflexive, strictly convex, and smooth Banach space X. The main tools of analysis are the variational characterizations ...