Show simple item record

dc.contributor.authorXiang, Liming
dc.contributor.authorLee, Andy
dc.date.accessioned2017-01-30T15:01:13Z
dc.date.available2017-01-30T15:01:13Z
dc.date.created2008-11-12T23:24:56Z
dc.date.issued2005
dc.identifier.citationXiang, Liming and Lee, Andy. 2005. Sensitivity of test for overdispersion in Poisson regression. Biometrical Journal 47 (2): 167-176.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/42652
dc.identifier.doi10.1002/bimj.200310096
dc.description.abstract

Overdispersion or extra-Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well-known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data.

dc.publisherWiley-VCH
dc.subjectPerturbations
dc.subjectPoisson regression
dc.subjectOverdispersion
dc.subjectScore test
dc.titleSensitivity of test for overdispersion in Poisson regression
dc.typeJournal Article
dcterms.source.volume47
dcterms.source.number2
dcterms.source.startPage167
dcterms.source.endPage176
dcterms.source.titleBiometrical Journal
curtin.note

Copyright 2005 John Wiley & Sons, Ltd.

curtin.note

Please refer to the publisher for the definitive published version.

curtin.identifierEPR-723
curtin.accessStatusFulltext not available
curtin.facultySchool of Public Health
curtin.facultyDivision of Health Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record