Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Isotopic fractionation of Cu in tektites

    153161_153161.pdf (182.5Kb)
    Access Status
    Open access
    Authors
    Moynier, F.
    Koeberl, C.
    Beck, P.
    Jourdan, Fred
    Telouk, P.
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Moynier, Frederic and Koeberl, Christian and Beck, Pierre and Jourdan, Fred and Telouk, Philippe. 2010. Isotopic fractionation of Cu in tektites. Geochimica et Cosmochimica Acta. 74 (2): pp. 799-807.
    Source Title
    Geochimica et Cosmochimica Acta
    DOI
    10.1016/j.gca.2009.10.012
    ISSN
    00167037
    School
    Department of Applied Geology
    Remarks

    NOTICE: This is the author’s version of a work that was accepted for publication in Geochimica et Cosmochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Geochimica et Cosmochimica Acta [74, 2, 2010] DOI 10.1016/j.gca.2009.10.012

    URI
    http://hdl.handle.net/20.500.11937/4268
    Collection
    • Curtin Research Publications
    Abstract

    Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.

    Related items

    Showing items related by title, author, creator and subject.

    • The isotopic composition of Zn in natural materials
      Ghidan, Osama Yousef Ali (2008)
      This work represents the most recent development of Zn isotopic measurements, and the first identification of Zn isotopic fractionation in natural materials using Thermal Ionisation Mass Spectrometry (TIMS). The procedures ...
    • Terrestrial-like zircon in a clast from an Apollo 14 breccia
      Bellucci, J.; Nemchin, Alexander; Grange, M.; Robinson, K.; Collins, G.; Whitehouse, M.; Snape, J.; Norman, M.; Kring, D. (2019)
      A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and ...
    • Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite
      Fougerouse, Denis; Reddy, Steven; Kirkland, Chris; Saxey, David; Rickard, William; Hough, R. (2018)
      © 2018 China University of Geosciences (Beijing) and Peking University The Pb isotopic composition of rocks is widely used to constrain the sources and mobility of melts and hydrothermal fluids in the Earth's crust. In ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.