Using cross-talk simulation to predict the performance of anaglyph 3-D glasses
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
Collection
Abstract
The anaglyph 3-D method is a widely used technique for presenting stereoscopic 3-D images. Its primary advantage is that it will work on any full-color display (LCDs, plasmas, and even prints) and only requires that the user view the anaglyph image using a pair of anaglyph 3-D glasses with usually one lens tinted red and the other lens tinted cyan (blue plus green). A common image-quality problem of anaglyph 3-D images is high levels of cross-talk — the incomplete isolation of the left and right image channels such that each eye sees a “ghost” of the opposite perspective view. An anaglyph cross-talk simulation model has been developed which allows the amount of anaglyph cross-talk to be estimated based on the spectral characteristics of the anaglyph glasses and the display. The model is validated using a visual cross-talk ranking test which indicates good agreement. The model is then used to consider two scenarios for the reduction of cross-talk in anaglyph systems and finds that a considerable reduction is likely to be achieved by using spectrally pure displays. The study also finds that the 3-D performance of commercial anaglyph glasses can be significantly better than handmade anaglyph glasses.
Related items
Showing items related by title, author, creator and subject.
-
Woods, Andrew J.; Harris, C.; Leggo, D.; Rourke, T. (2013)The anaglyph three-dimensional (3D) method is a widely used technique for presenting stereoscopic 3D images. Its primary advantages are that it will work on any full-color display and only requires that the user view the ...
-
Gao, Jason (2002)Carrierless amplitude and phase (CAP) modulation is generally regarded as a bandwidth efficient two-dimensional (2-D) passband line code. It is closely related to the pulse amplitude modulation (PAM) and quadrature amplitude ...
-
May, Heather (2010)This research is situated in a space between the broad fields of art-glass design, art, science and the technology of alternative photographic printing processes. It is an experimental project with a core research question. ...