Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming

    Access Status
    Fulltext not available
    Authors
    Liao, M.
    Wang, W.
    Ran, R.
    Shao, Zongping
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liao, M. and Wang, W. and Ran, R. and Shao, Z. 2011. Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. Journal of Power Sources. 196 (15): pp. 6177-6185.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2011.03.018
    ISSN
    0378-7753
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/4283
    Collection
    • Curtin Research Publications
    Abstract

    Inexpensive 20 wt.% Ni-Ce0.8Zr0.2O2 catalysts are synthesized by a glycine nitrate process (GNP) and an impregnation process (IMP). The catalytic activity for ethanol steam reforming (ESR) at 400-650 °C, catalytic stability and carbon deposition properties are investigated. Ni-Ce0.8Zr0.2O2 (GNP) shows a higher catalytic performance than Ni-Ce0.8Zr0.2O 2 (IMP), especially at lower temperatures. It also presents a better coking resistance and a lower graphitization degree of the deposited carbon. The superior catalytic activity and coke resistance of Ni-Ce0.8Zr 0.2O2 (GNP) is attributed to the small particle size of the active metallic nickel phase and the strong interaction between the nickel and the Ce0.8Zr0.2O2 support, as evidenced by the XRD and H2-TPR. The Ni-Ce0.8Zr0.2O 2 (GNP) is further applied as an anode functional layer in solid oxide fuel cells operating on ethanol steam. The cell yields a peak power density of 536 mW cm-2 at 700 °C when operating on EtOH-H 2O gas mixtures, which is only slightly lower than that of hydrogen fuel, whereas the cell without the functional layer failed for short-term operations. Ni-Ce0.8Zr0.2O2 (GNP) is promising as an active and highly coking-resistant catalyst layer for solid-oxide fuel cells operating on ethanol steam fuel. © 2011 Elsevier B.V. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol
      Wang, W.; Chen, Y.; Wang, F.; Tade, Moses; Shao, Zongping (2015)
      To improve the water storage capability, electrochemical activity and coking resistance of the Ni+BaZr0.4Ce0.4Y0.2O3-δ (BZCY4) material, the reduction of Zr amount and partial Yb doping on Y site are investigated in this ...
    • Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system
      Wang, Wei; Su, C.; Zheng, T.; Liao, M.; Shao, Zongping (2012)
      Ni + CexZr1−xO2 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) cermets were synthesized and their catalytic performance for partial oxidation of ethanol (POE) reaction was studied. The structure, reducibility properties and carbon ...
    • A high-performance no-chamber fuel cell operated on flame
      Wang, K.; Ahn, J.; Shao, Zongping (2008)
      A no-chamber solid-oxide fuel cell that operated on a fuel-rich ethanol flame was reported. Heat produced from the combustion of ethanol thermally sustained the fuel cell at a temperature range of 500-830 °C. Considerable ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.