Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics

    196582_196582.pdf (5.166Mb)
    Access Status
    Open access
    Authors
    Wang, Xuan-Ce
    Li, Zheng-Xiang
    Li, X.
    Xu, Y.
    Li, X.
    Li, J.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, Xuan-Ce and Li, Zheng-Xiang and Li, Xian-Hua and Li, Jie and Xu, Yi-Gang and Li, Xiang-Hui. 2013. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters. 377-378: pp. 248-259.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2013.07.003
    ISSN
    0012821X
    Remarks

    NOTICE: this is the author’s version of a work that was accepted for publication in Earth and Planetary Science Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Earth and Planetary Science Letters, Vol. 377-378 (2013). DOI: 10.1016/j.epsl.2013.07.003

    URI
    http://hdl.handle.net/20.500.11937/42851
    Collection
    • Curtin Research Publications
    Abstract

    Whether or not mantle plumes and plate subduction are genetically linked is a fundamental geoscience question that impinges on our understanding of how the Earth works. Late Cenozoic basalts in Southeast Asia are globally unique in relation to this question because they occur above a seismically detected thermal plume adjacent to deep subducted slabs. In this study, we present new Pb, Sr, Nd, and Os isotope data for the Hainan flood basalts. Together with a compilation of published results, our work shows that less contaminated basaltic samples from the synchronous basaltic eruptions in Hainan–Leizhou peninsula, the Indochina peninsula and the South China Sea seamounts share the same isotopic and geochemical characteristics. They have FOZO-like Sr, Nd, and Pb isotopic compositions (the dominant lower mantle component). These basalts have primitive Pb isotopic compositions that lie on, or very close to, 4.5- to 4.4-Ga geochrons on 207Pb/204Pb versus 206Pb/204Pb diagram, suggesting a mantle source developed early in Earthʼs history (4.5–4.4 Ga). Furthermore, our detailed geochemical and Sr, Nd, Pb and Os isotopic analyses suggest the presence of 0.5–0.2 Ga recycled components in the late Cenozoic Hainan plume basalts.This implies a mantle circulation rate of >1 cm/yr, which is similar to that of previous estimates for the Hawaiian mantle plume. The identification of the ancient mantle reservoir and young recycled materials in the source region of these synchronous basalts is consistent with the seismically detected lower mantle-rooted Hainan plume that is adjacent to deep subducted slab-like seismic structures just above the core–mantle boundary. We speculate that the continued deep subduction and the presence of a dense segregated basaltic layer may have triggered the plume to rise from the thermal–chemical pile. This work therefore suggests a dynamic linkage between deep subduction and mantle plume generation.

    Related items

    Showing items related by title, author, creator and subject.

    • Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones?
      Wang, Xuan-Ce; Li, Zheng-Xiang; Li, X.; Li, J.; Liu, Y.; Long, W.; Zhou, J.; Wang, F. (2012)
      Basaltic lavas from Hainan Island near the northern edge of the South China Sea have an age range of between late Miocene (about 13 Ma) and Holocene, with a peak age of late Pliocene to middle Pleistocene. The basaltic ...
    • Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review
      Wang, Xuan-ce; Li, X.; Li, W.; Li, Zheng-Xiang (2009)
      Ca. 825-720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous ...
    • Formation of mantle “lone plumes” in the global downwelling zone — A multiscale modelling of subduction-controlled plume generation beneath the South China Sea
      Zhang, Nan; Li, Z. (2018)
      It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.