A robust cylindrical fitting to point cloud data
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Environmental, engineering and industrial modelling of natural features (e.g. trees) and man-made features (e.g. pipelines) requires some form of fitting of geometrical objects such as cylinders, which is commonly undertaken using a least-squares method that—in order to get optimal estimation—assumes normal Gaussian distribution. In the presence of outliers, however, this assumption is violated leading to a Gaussian mixture distribution. This study proposes a robust parameter estimation method, which is an improved and extended form of vector algebraic modelling. The proposed method employs expectation maximisation and maximum likelihood estimation (MLE) to find cylindrical parameters in case of Gaussian mixture distribution. MLE computes the model parameters assuming that the distribution of model errors is a Gaussian mixture corresponding to inlier and outlier points. The parameters of the Gaussian mixture distribution and the membership functions of the inliers and outliers are computed using an expectation maximisation algorithm from the histogram of the model error distribution, and the initial guess values for the model parameters are obtained using total least squares. The method, illustrated by a practical example from a terrestrial laser scanning point cloud, is novel in that it is algebraic (i.e. provides a non-iterative solution to the global maximisation problem of the likelihood function), is practically useful for any type of error distribution model and is capable of separating points of interest and outliers.
Related items
Showing items related by title, author, creator and subject.
-
Awange, Joseph; Palancz, B.; Lewis, R.; Lovas, T.; Heck, B.; Fukuda, Y. (2016)Traditionally, the least-squares method has been employed as a standard technique for parameter estimation and regression fitting of models to measured points in data sets in many engineering disciplines, geoscience fields ...
-
Xiang, L.; Yau, K. K. W.; Hui, Y. V.; Lee, Andy (2008)Summary. The k-component Poisson regression mixture with random effects is an effective model in describing the heterogeneity for clustered count data arising from several latent subpopulations. However, the residual ...
-
Nurunnabi, Abdul; Belton, David; West, Geoff (2012)Objectives: Surface reconstruction and fitting for geometric primitives and three Dimensional (3D) modeling is a fundamental task in the field of photogrammetry and reverse engineering. However it is impractical to get ...