Show simple item record

dc.contributor.authorYang, X.
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T15:06:27Z
dc.date.available2017-01-30T15:06:27Z
dc.date.created2011-03-02T20:01:35Z
dc.date.issued2010
dc.identifier.citationYang, X.M. and Teo, K.L. 2010. A converse duality theorem on higher-order dual models in nondifferentiable mathematical programming. Optimization Letters. 6 (1): pp. 11-15.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/43295
dc.identifier.doi10.1007/s11590-010-0247-1
dc.description.abstract

We consider in this paper Mond–Weir type higher-order dual models in nondifferentiable mathematical programming introduced by Mishra and Rueda (2002, J. Math. Anal. Appl. 272, 496–506). We give a converse duality theorem on Mond-Weir type higher-order dual model under mild assumptions.

dc.publisherSpringer Verlag
dc.subjectNondifferentiable mathematical programming - Converse duality - Higher-order dual models
dc.titleA converse duality theorem on higher-order dual models in nondifferentiable mathematical programming
dc.typeJournal Article
dcterms.source.issn18624472
dcterms.source.titleOptimization Letters
curtin.note

The original publication is available at: http://www.springerlink.com

curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record