Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    Access Status
    Open access via publisher
    Authors
    Wylezalek, D.
    Vernet, J.
    De Breuck, C.
    Stern, D.
    Brodwin, M.
    Galametz, A.
    Gonzalez, A.
    Jarvis, M.
    Hatch, N.
    Seymour, Nick
    Stanford, S.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wylezalek, D. and Vernet, J. and De Breuck, C. and Stern, D. and Brodwin, M. and Galametz, A. and Gonzalez, A. et al. 2014. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2. Astrophysical Journal. 786 (1).
    Source Title
    Astrophysical Journal
    DOI
    10.1088/0004-637X/786/1/17
    ISSN
    0004-637X
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/43622
    Collection
    • Curtin Research Publications
    Abstract

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (zf ~ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ~ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

    Related items

    Showing items related by title, author, creator and subject.

    • Extra-nuclear starbursts: Young luminous hinge clumps in interacting galaxies
      Smith, B.; Soria, Roberto; Struck, C.; Giroux, M.; Swartz, D.; Yukita, M. (2014)
      Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy ...
    • The LOFAR window on star-forming galaxies and AGNs – curved radio SEDs and IR–radio correlation at 0<z<2.5
      Calistro Rivera, G.; Williams, W.; Hardcastle, M.; Duncan, K.; Röttgering, H.; Best, P.; Brüggen, M.; Chyzy, K.; Conselice, C.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, Hubertus; Jarvis, M.; Mahony, E.; Miley, G.; Morabito, L.; Prandoni, I.; Sabater, J.; Smith, D.; Tasse, C.; van der Werf, P.; White, G. (2017)
      We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us ...
    • The local radio-galaxy population at 20 GHz
      Sadler, E.; Ekers, Ronald; Mahony, E.; Mauch, T.; Murphy, T. (2014)
      We have made the first detailed study of the high-frequency radio-source population in the local Universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.