Genetic Algorithm based Fuzzy Multiple Regression for the Nocturnal Hypoglycaemia Detection
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
Source Conference
School
Remarks
Copyright © 2010 IEEE This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Collection
Abstract
Low blood glucose (Hypoglycaemia) is dangerous and can result in unconsciousness, seizures and even death. It has a common and serious side effect of insulin therapy in patients with diabetes. We measure physiological parameters (heart rate, corrected QT interval of the electrocardiogram (ECG) signal, change of heart rate, and the change of corrected QT interval) continuously to provide detection of hypoglycaemic. Based on these physiological parameters, we have developed a genetic algorithm based multiple regression model to determine the presence of hypoglycaemic episodes. Genetic algorithm is used to determine the optimal parameters of the multiple regression. The overall data were organized into a training set (8 patients) and a testing set (another 8 patient) which are randomly selected. The clinical results show that the proposed algorithm can achieve predictions with good sensitivities and acceptable specificities.
Related items
Showing items related by title, author, creator and subject.
-
Srar, Jalal Abdulsayed (2011)In recent years, adaptive or smart antennas have become a key component for various wireless applications, such as radar, sonar and cellular mobile communications including worldwide interoperability for microwave ...
-
Kulanoot, Araya (2000)The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in this class are typically concerned with selecting from a set of given items, each with a specified weight and value, a subset ...
-
Huo, Jia Q. (1999)Adaptive filters have found applications in many signal processing problems. In some situations, linear constraints are imposed on the filter weights such that the filter is forced to exhibit a certain desired response. ...