Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in Materials and Design. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials and Design, Vol. 63 (2014). DOI: 10.1016/j.matdes.2014.06.059
Collection
Abstract
Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates.
Related items
Showing items related by title, author, creator and subject.
-
Sarker, Prabir; McBeath, S. (2011)Geopolymer is an alternative binder for concrete. Heat-cured fly ash based geopolymer concrete can be an ideal material for precast concrete members. This paper presents the residual strength of reinforced geopolymer ...
-
Gluth, G.; Rickard, William; Werner, S.; Pirskawetz, S. (2016)© 2016, RILEM.Two fly ash-based geopolymer concretes with quartz aggregates or with expanded clay (lightweight) aggregates were exposed to the ISO 834-1 standard fire curve in a small-scale fire test set-up. Acoustic ...
-
Sarker, Prabir; McBeath, S. (2015)As a new alternative to OPC, investigation into the fire endurance of geopolymer concrete is of utmost importance in order to ensure safety. Geopolymer and OPC concrete panels of 125–175 mm thickness containing a layer ...