Show simple item record

dc.contributor.authorPham, DucSon
dc.contributor.authorSaha, Budhaditya
dc.contributor.authorPhung, Dinh
dc.contributor.authorVenkatesh, Svetha
dc.contributor.editorD Cook
dc.contributor.editorJ Pei
dc.contributor.editorW Wang
dc.contributor.editorO Zaiane
dc.contributor.editorXindong Wu
dc.date.accessioned2017-01-30T15:11:25Z
dc.date.available2017-01-30T15:11:25Z
dc.date.created2012-03-06T20:00:50Z
dc.date.issued2011
dc.identifier.citationPham, Duc Son and Saha, B. and Phung, D. Q. and Venkatesh, S. 2011. Detection of cross channel anomalies from multiple data channels, in D Cook, J Pei, W Wang, O Zaiane, Xindong Wu (ed), ICDM 2011, Mar 11 2011, pp. 527-536. Vancouver, Canada: IEEE
dc.identifier.urihttp://hdl.handle.net/20.500.11937/43985
dc.identifier.doi10.1109/ICDM.2011.51
dc.description.abstract

We identify and formulate a novel problem: cross channel anomaly detection from multiple data channels. Cross channel anomalies are common amongst the individual channel anomalies, and are often portent of significant events. Using spectral approaches, we propose a two-stage detection method: anomaly detection at a single-channel level, followed by the detection of cross-channel anomalies from the amalgamation of single channel anomalies. Our mathematical analysis shows that our method is likely to reduce the false alarm rate. We demonstrate our method in two applications: document understanding with multiple text corpora, and detection of repeated anomalies in video surveillance. The experimental results consistently demonstrate the superior performance of our method compared with related state-of-art methods, including the one-class SVM and principal component pursuit. In addition, our framework can be deployed in a decentralized manner, lending itself for large scale data stream analysis.

dc.publisherIEEE
dc.subjecttopic detection
dc.subjectAnomaly detection
dc.subjectSpectral methods
dc.titleDetection of cross channel anomalies from multiple data channels
dc.typeConference Paper
dcterms.source.startPage527
dcterms.source.endPage536
dcterms.source.title2011 11th IEEE Int. Conference on Data Mining
dcterms.source.series2011 11th IEEE Int. Conference on Data Mining
dcterms.source.isbn9780769544083
dcterms.source.conferenceICDM 2011
dcterms.source.conference-start-dateMar 11 2011
dcterms.source.conferencelocationVancouver, Canada
dcterms.source.placeLos Alamitos, USA
curtin.departmentDepartment of Computing
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record