The radio properties of infrared-faint radio sources
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6µm when using sensitive Spitzer observations with µJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6µm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances. © 2010 ESO.
Related items
Showing items related by title, author, creator and subject.
-
Sadler, E.; Ekers, Ronald; Mahony, E.; Mauch, T.; Murphy, T. (2014)We have made the first detailed study of the high-frequency radio-source population in the local Universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies ...
-
Kapiñska, A.; Terentev, I.; Terentev, W.; Shabala, S.; Shabala, A.; Rudnick, L.; Storer, L.; Banfield, J.; Willett, K.; Willett, F.; Willett, C.; Willett, A.; Middelberg, E.; Norris, R.; Norris, K.; Seymour, Nick; Simmons, B. (2017)Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a ...
-
Mignano, A.; Prandoni, I.; Gregorini, L.; Parma, P.; De Ruiter, H.; Wieringa, M.; Vettolani, G.; Ekers, Ronald (2008)Context. One of the most debated issues about sub-mJy radio sources, which are responsible for the steepening of the 1.4 GHz source counts, is the origin of their radio emission. Particularly interesting, from, this point ...