Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A kinetic-empirical model for particle size distribution evolution during pulverised fuel combustion

    Access Status
    Fulltext not available
    Authors
    Shah, K
    Cieplik, M.
    Betrand, C.
    van de Kamp, W.
    Vuthaluru, Hari
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shah, K. and Cieplik, M. and Betrand, C. and van de Kamp, W. and Vuthaluru, H. 2010. A kinetic-empirical model for particle size distribution evolution during pulverised fuel combustion. Fuel. 89 (9): pp. 2438-2447.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2009.12.013
    ISSN
    0016-2361
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/44147
    Collection
    • Curtin Research Publications
    Abstract

    Particle size is an essential parameter in pulverised fuel (PF) combustion as many of the problems or further areas of development in these systems are strongly influenced by the fuel and ash size distribution. This is particularly true for dynamic processes like pollutant formation, corrosion, erosion, slagging and fouling and the related decrease of the combustion and boiler efficiency. The evolution of particle size distribution (PSD) is a complex interaction of various competing chemical and physical transformations. Char oxidation, devolatilization and fragmentation, etc. represent first line physical and chemical transformations which can amend the particle size in the radiation zone. The evolution of the PSD represents the convolution of all of these physical and chemical transformations, operating over the entire size distribution. As a consequence, it is difficult to extract the relative importance of all competing size altering processes from the experiments. Various models such as break-up, thermal stress, shrinking core, percolation and particle-population model have been developed by incorporating numerous ash transformation mechanisms to predict the particle size evolution during the pulverised fuel combustion. The present work describes an adaptation of the numerical kinetic-based particle-population balance for predicting particle size evolution during PF combustion developed by Dunn-Rankin and Mitchell. The model is further simplified analytically and validated against experimental results. Several empirical parameters derived from the experiments are incorporated into the model. The resulting simplified PSD evolution model shows good agreement with literature and experimental results, with maximum 10% absolute standard deviation.

    Related items

    Showing items related by title, author, creator and subject.

    • Ash cenosphere formation, fragmentation and its contribution to particulate matter emission during solid fuels combustion
      Li, Yi (2012)
      Electricity generated from stationary coal-fired power stations has been playing an important role in powering the global economy and is projected to continue its key role in the foreseeable future. However, substantial ...
    • Ash formation mechanisms during combustion/co-firing of biomass and coal
      Shah, Kalpit Vrajeshkumar (2010)
      In case of PF firing, solid fuels such as coal and biomass undergo various chemical and physical transformations (devolatilization, char oxidation, fragmentation and gas to particle conversion followed by nucleation, ...
    • Emission of inorganic particulate matter during the combustion of biomass, biochar and Collie coal
      Gao, Xiangpeng (2011)
      Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.