Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system

    Access Status
    Fulltext not available
    Authors
    Mueller, A.
    Hagemann, S.
    McNaughton, Neal
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mueller, A. and Hagemann, S. and McNaughton, N. 2016. Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system. Mineralium Deposita. [In Press]
    Source Title
    Mineralium Deposita
    DOI
    10.1007/s00126-016-0665-9
    ISSN
    0026-4598
    School
    John de Laeter CoE in Mass Spectrometry
    URI
    http://hdl.handle.net/20.500.11937/44158
    Collection
    • Curtin Research Publications
    Abstract

    The Boulder Lefroy-Golden Mile (BLF-GMF) fault system is the most intensely mineralized structure (>2150 t Au to 2015) in the Archean Yilgarn Craton, Western Australia. The fault system links the Kalgoorlie and Kambalda mining districts in the Eastern Goldfields Province, a continental-margin orogen subdivided into the western Kalgoorlie ensialic rift and the eastern Kurnalpi volcanic arc. After rifting, the 2.73–2.66 Ga greenstone-greywacke succession in the Kalgoorlie-Kambalda area underwent five phases of orogenic deformation, predominantly during ENE-WSW shortening: D1 upright folding at ca. 2680 Ma, D2 sinistral strike-slip faulting at 2678–2663 Ma, D3 folding of late conglomerate-turbidite successions at 2665–2655 Ma, D4 dextral strike-slip faulting at 2655–2640 Ma and D5 east-northeast-striking normal faulting. Regional prehnite-pumpellyite to greenschist facies burial metamorphism took place during D1 and D3 crustal thickening, and amphibolite facies aureoles formed around granite batholiths during and after D3 at 400 ± 100 MPa pressure. The D2 BLF offsets D1 folds by 12 km SW-side south and contains a porphyry dyke (2676 ± 7 Ma) boudinaged by transtensional oblique-slip along a line pitching 21° southeast. The BLF is linked by transverse D2 thrusts to other sinistral faults recording strike-slip until 2663 ± 7 Ma. Late D2 strike-slip movement alternated with early D3 shortening. D3 thrusts accommodated strain in fault blocks of rigid mafic-ultramafic volcanic rocks consolidated during D1, while the sedimentary rocks in D3 synclines were foliated at high strain.Biotite-sericite alteration and gold-pyrite mineralization in the BLF-GMF system took place at 11 ± 4 km burial depth in faults active during D2 and D3. The Golden Mile (1708 t Au) and other deposits are associated with stocks and dykes of high-Mg monzodiorite-tonalite porphyry, part of a late-orogenic (2665–2645 Ma) mantle-derived suite of adakitic affinity. Hornblende and apatite compositions indicate that these intrusions are characterized by high water contents (5–6 wt% H2O in melt), by high oxidation states (dNNO +1.0 to +2.4 log units) and by igneous anhydrite. Some stocks contain pervasive anhydrite-pyrite mineralization of low gold grade (0.4 g/t). Biotite-sericite-pyrite ore bodies such as those at Kanowna Belle (140 t Au) also replace faulted metamorphic rocks above batholith domes cored by plutons of the monzodiorite suite. The D4 strike-slip faults are barren at Kambalda but control gold quartz-vein ore at Kalgoorlie (2651 ± 9 Ma), and Au-Ag breccia ore at Black Flag (<2648 ± 6 Ma).

    Related items

    Showing items related by title, author, creator and subject.

    • Structural geology and gold mineralisation of the Ora Banda and Zuleika districts, Eastern Goldfields, Western Australia.
      Tripp, Gerard I. (2000)
      Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
    • Metallogenesis of the Paleoproterozoic Piaba orogenic gold deposit, São Luís cratonic fragment, Brazil
      Klein, E.L.; Lucas, F.R.; Queiroz, J.D.; Freitas, S.C.; Renac, C.; Galarza, M.A.; Jourdan, Fred; Armstrong, R. (2014)
      Piaba is an orogenic gold deposit (~ 3.5 Moz) of the São Luís cratonic fragment in north-northeastern Brazil. The deposit is epizonal–mesozonal and associated with the development of a subvertical strike–slip fault that ...
    • The timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals
      Vielreicher, N.; Groves, D.; McNaughton, Neal; Fletcher, I. (2015)
      The highly mineralized Eastern Goldfields of the eastern Yilgarn craton is an amalgamation of dominantly Neoarchaean granitoid-greenstone terranes and domains that record a history of early rifting, followed by westward ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.